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CHAPTER 1 

INTRODUCTION 

The purpose of this research is to examine the reliability levels of the prescriptive 

wall bracing requirements of the 2009 International Residential Code (IRC) and the 

engineered shear wall requirements of the 2009 International Building Code (IBC) along 

with the 2005 Special Design Provisions for Wind and Seismic (AF&PA SDPWS).  This 

research encompasses structures constructed in 90 m.p.h. wind areas with exposure B. 

In order to understand the focus of the proposed research, it is necessary to 

understand the history of housing, housing construction practices, and wall bracing.  

Based upon the ASCE 7 wind speed map shown in Figure 1, this research affects the 

majority of the housing in the continental United States since it applies to structures in 

low wind speed and low seismic areas.  Currently, a prescriptive design method is 

dominant for the design of lateral bracing for single family houses.  When the limits of 

the prescriptive design are exceeded, then an engineered alternative is necessary.  

Based on the information available today, the reliability levels of these two design 

methods are not equivalent.  It is desirable to understand the reliability levels of these 

two systems and compare them. 

The reliability analysis is useful for several reasons.  First, it provides a 

comparison of the two design philosophies in a way that is independent of the design 

methods by using the second-moment reliability index β.  This “provides a relative 
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Figure 1:  Continental US Shaded Wind Speed Map (WBDG 2010)

90 MPH or Less 

Reprinted with permission 
from the Whole Building 
Design Guide National 
Institute of Builidng Sciences. 
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measure of the safety of a structural component or system and serves as the 

cornerstone of code calibration studies” (van de Lindt and Rosowsky 2005).  Second, 

the study is useful to calibrate resistance factors to unify the two design methods with 

respect to structural safety.  This is beneficial for alternate building materials and 

systems that could provide economic, energy or sustainability benefits.   

This research provides the following items: 

1. The reliability index of the unit shear capacity for 15/32” Wood Structural 

Panels (WSP) in SDPWS (2005) 

2. The appropriateness of ASTM E72 for walls anchored with mechanical 

hold downs and partially restrained IRC (2009) prescriptive walls. 

3. Verification for the resistance factor used by the SDPWS. 

4. Recommended codified nominal unit shear design values for wind load 

for unrestrained shear walls constructed in accordance with the 2009 

IRC using 15/32” WSP. 

5. Recommended codified nominal unit shear design values for wind load 

for fully restrained shear walls constructed in accordance with the 2009 

IRC using 15/32” WSP. 

6. Proposed requirement for unrestrained shear wall tests for WSP 

manufacturers in the Voluntary Product Standard PS 2-04 titled 

Performance Standards for Wood-Based Structural-Use Panels (NIST 

2004) for WSP.   



www.manaraa.com

 

 

4 

7. Recommended IRC utilization of the unrestrained shear wall nominal 

unit shear design values or definition of some minimum restraining 

force to be known present. 

The above results will create an equitable design methodology between the IRC 

prescriptive method and the SDPWS.  When implemented and utilized in the IRC, 

alternate products and engineered alternatives can be provided without the appearance 

of over-conservatism. 

1.1 History 

1.1.1 Historic House Data 

The total load resistance of wall bracing in houses is not only dependent upon 

the material, but also the spacing of brace wall lines and aspect ratios of brace walls.  

The spacing of the brace wall lines obviously affects the tributary wind area of each 

brace wall line.  The aspect ratios typically affect the strength and certainly affect the 

stiffness of the brace walls.  Therefore, the number of openings in a wall as well as the 

height of a wall can affect the load resistance of the lateral load resisting system.  These 

geometric features have been changing during the past century, creating a greater 

demand on lateral bracing systems. 

Beyond the structural history of brace walls, the economic value of homes is also 

of concern.  As the value of homes increase, the financial risk due to wind damage also 

increases. 
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Table 1 shows a comparison of house construction over the 20th century.  The 

average size of houses more than doubled in this period of time, while the number of 

bedrooms remained about the same.  Today’s homes include more large open spaces 

than homes built in the early 1900s.  Over the same time period, housing costs have 

increased by a factor of 100.  The inflation-adjusted housing cost in the early 1900s was 

about $35.00/sq. ft.  The cost in 2000 was about $100.00/sq. ft. 

Table 1:  Historic House Data (HUD 2001) 

 Early 1900’s Mid 1900’s Late 1900’s 

Population 76 Million (40% urban, 
60% rural) 

150 Million (64 % urban, 
36% rural) 

270 Million (76% urban, 
24% rural) 

Median Family Income $490 $3,319 $45,000 
New Home Price Average Unknown

1
 $11,000 $200,000 

Type of Purchase Typically Cash FHA Mortgage, 4.25% 
(few options) 

8% (many options) 

Ownership Rate 46 % 55% 67% 
Total Housing Units 16 Million 43 Million 107 Million (approx. 50% 

single-family) 
Number of annual 
housing starts 

189,000 (65% single-
family) 

1.95 Million (85% single-
family) 

1.54 Million (approx. 
50% single family) 

Average Size (starts) < 1,000 sq. ft. 1,000 sq. ft. 2,000 sq. ft. or more 
Stories 1 to 2 1 (86%); 2 or more 

(14%) 
1 (48%); 1½ or 2 (49%) 

Bedrooms 2 to 3 2 (66%); 3 (33%) 2 or less (12%); 3 (54%); 
4 or more (34%) 

Bathrooms 0 or 1 1½ or less (96%) 1½ or less (7%); 2 
(40%); 2½ + (53%) 

Garage  1 car (41%); 0 (53%) 2 car (65%) 

 

Table 1 also indicates that there has been a large movement to urban settings 

from rural.  The shift from rural to urban settings indicates that wind exposure is 

decreasing as the exposure category is B for urban locations and typically C for rural 

locations (ASCE 7-05).   

                                            

1
 Based on “Housing at the Millennium: Facts, Figures, and Trends,” the average new home cost was less 

than $5,000.  However, this estimate is potentially skewed in that many people could not afford a “house” 
of the nature considered in the study.  Based on Sears, Roebuck, and Co. catalogue prices at the turn of 
the century, a typical house may have ranged from $1,000 to $2,000, including land. 
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Construction methods for housing have also changed throughout the 20th 

century.  A summary of the current construction methods for 2001 is presented in Table 

2.  Of interest for this research are the foundation type, wall sheathing and wall framing.  

The dominant foundation type is a slab on grade system.  This system includes 

perimeter footings, typically to frost depth; interior footings at interior-bearing locations; 

and a floor slab constructed on grade.  The dominant wall sheathing is oriented strand 

board (OSB) with foam panels used in 24% of the construction.  The foam panels are 

typically non-structural sheathing.  The dominant wall framing is 2x4 studs at 16” o.c.  

This research considers slab on grade construction, OSB intermittent sheathing, and 

2x4 stud wall framing at 16” o.c. 

Table 2:  Current Construction Methods (HUD 2001) 

Foundation Type Basement (34%); Crawlspace (11%); Slab (54%) 
Floor Framing Type:  Lumber (62%); Wood Trusses (9%); Wood I-joists (28%) 

Size of Lumber:  2x8 (8%); 2x10 (70%); 2x12 (21%) 
Type of Lumber: SYP (39%); DF (23%); other (37%) 

Floor Sheathing Plywood (37%); OSB (30%); Board (6%) 
Wall Framing 2x4 @ 16” (73%); 2x4 @ 24” (17%); 2x6 @ 16” (17%); 2x6 @ 24” (3%) 
Wall Sheathing Plywood (11.2%); OSB (44.2%); Foam Panels (24%); Other (20.6%) 
Ceiling Height 8’ (54%); 9’ (29%); 10’ (8%) 
Wall Openings 2.3 Ext. Doors; 1.2 Patio Doors; 14.5 Windows; 1.2 Fireplaces (13-15% of wall 

area on average) 
Roof Sheathing Plywood (27.6%); OSB (71%) 
Roof Framing Rafters (6%); I-joists (29%); Wood Trusses (65%) 
Roof Pitch 4/12 or less (7%); 5/12 to 6/12 (63%); 7/12 or greater (30%) 
Roof Shape Gable (63%); Hip (36%) 
Note:  Percentages for floor, wall, and roof sheathing and framing are based on total aggregated floor and 
wall area for housing starts.  Other values are given as a percentage of housing starts. 

1.1.2 Historic Wall Bracing 

Wall bracing in houses to provide lateral stability has evolved over the past 

century as framing methods changed from balloon to platform framing and as materials 

other than sawn boards and plaster became available.  Bracing methods in the early 

1900s consisted of no bracing, 1x4 let-in bracing, or horizontal or diagonal wood 
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sheathing (HUD 2001).  The method of no bracing apparently relied on the interior wood 

lath and plaster for the bracing system. 

As early as 1929 the Forest Products Laboratory began comparison testing of 

various bracing methods (HUD 2001).  The walls tested were 9’ x 14’ and 

7’-4” x 12’ with enough vertical restraint to prevent over-turning.  These walls were 

either solid, had one window opening, or had one window and one door opening.  The 

results of the tests are presented in (HUD 2001). 

1.1.3 Prescriptive Code History 

Plywood was introduced in the mid 1900s.  This renewed the interest in bracing 

methods.  Plywood is typically manufactured in 4’ x 8’ sheets and is installed either 

continuously over the exterior walls or intermittently.   Until the early 2000s, with the 

introduction of the International Codes (a combination of the BOCA, UBC, and SBC), 

the primary bracing methods in the late 1900s were metal T-bracing, wood structural 

panels (plywood or OSB), or gypsum. 

Table 1 shows that houses are larger, but don’t have more rooms, therefore 

houses have larger rooms today than they did a century ago.  This, coupled with larger 

window and door openings, has led to less lateral resistance in houses. Although 

typically discounted, interior partitions provide additional strength and stiffness to the 

lateral resisting system of houses.  The percentage of interior partitions in comparison 

to floor area has decreased with the increased house size and especially with the large 

open spaces enjoyed in the later part of the 1900s.  Table 3 summarizes the change in 

the amount of interior walls from early last century to late last century.  Note that there is 
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a 1.1% and 1.7% reduction in interior walls, as a percent of floor area, for the second 

and first floor of two-story houses respectively. 

Table 3:  Interior Wall Amounts (HUD 2001) 
(Lineal feet as a percent of floor area of story) 

OLDER HOMES (early 1900s)1 MODERN HOMES (late 1900s)2 

1 Story 9% ± 1% 1st Floor of 1 to 2 Story 4.3% ± 1% 
1st Floor of 2 Story 6% ± 1% 2nd Floor of 2 Story 7.9% ± 1% 

2nd Floor of 2 Story 9% ± 1.5%  
Notes: 
1
Values based on a small sample of traditional house plans in Sears Catalogues (1910-1926) including 

affordable and more expensive construction of 1 and 2 stories. 
2
Values based on a small sample of representative modern home plans (1990s) including economy 

and move-up construction (no luxury homes). 

 
By the late 1900s, Hurricane Andrew and the Northridge Earthquake had 

highlighted the importance of lateral bracing in houses.  This timing, along with the 

development of the International Codes, changed the bracing methods used in 

prescriptive design.  Much research of wood shear walls and bracing methods focused 

on seismic design and cyclic testing.  As a result, the codes began prescribing more 

lateral bracing. 

The current IRC (IRC 2009) uses more of a rational design method to prescribe 

wall bracing to resist wind loads than previous editions but varies greatly from the 

typical rational (engineered) design method using the ASCE 7-05 and the SDPWS.  The 

current IRC (IRC 2009) has also made an attempt to utilize both partial wall restraint 

and a whole house effect.  It is the goal of this research to compare the reliability of the 

prescriptive design with the rational design using SDPWS. 
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1.2 Reliability Analysis 

1.2.1 Testing 

As part of this research, (25) 4’ x 8’ brace walls were monotonically load tested.  

These walls varied from full restraint (a mechanical hold down device) to unrestrained 

(only a single anchor bolt).  The testing was performed at the Structural Building 

Components Research Institute located in Madison, WI.  The goal of the testing was to 

understand the load-deflection behavior and ultimate strength of the varying restraint 

conditions and the variability of the ultimate strength. 

1.2.2 Verification of Empirical Partial Restraint Factor 

The test data was used to verify the empirical partial restraint factor previously 

developed by Ni and Karacabeyli (2000).  This factor is intended to predict the capacity 

of an unrestrained or partially restrained shear wall using the nominal unit shear 

strength of a fully restrained wall.  Differences between the IRC prescriptive sole plate 

anchorage and the anchorage used to develop the empirical partial restraint factor 

necessitate a verification of this factor for the IRC wall. 

1.2.3 Reliability Model 

Using the test results from the 25 tests, ultimate strengths and variability were 

used in a first order second moment reliability model (FOSM) and Monte Carlo 

Simulation (MCS) to determine the reliability index, β, for the current SDPWS nominal 

unit shear strength and the nominal unit shear strength used in the 2009 IRC.  The tests 

results were also used to identify the random variables used in the reliability model.  
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The reliability analysis used both numerical analysis and Monte Carlo simulation to 

evaluate the model. 

Once the model was constructed for the varying wall restraint conditions, two 

items were varied to provide a target value for β (3.25) for each of these conditions 

which is similar to the current reliability index of 3.27 for the SDPWS nominal values. 

These items included the resistance factor, φ, and the nominal tabulated unit shear 

values for the varying cases. 

1.3 Recommendations for Code Revisions 

The conclusions of this research include recommendations for code revisions for 

unrestrained, partially restrained, and fully restrained shear walls constructed with WSP 

with 8d common nails and recommendations for finite element models.  These are 

based on a 4’x8’ WSP shear wall.  The following is a list of these conclusions. 

1. The reliability index of the SDPWS nominal unit shear value for 15/32” WSP 

was determined using the allowable stress design (ASD) reduction factor and 

resistance factor, φ, and APA Research Report 154 (APA 2004). 

2. The use of ASTM E72 is inappropriate to determine nominal unit shear design 

values. 

3. Present nominal unit shear values published in SDPWS cannot be achieved 

with a mechanical hold down at the base of the wall. 

4. Using reliability analysis for calibration, partial restraint modification factors 

are determined for both mechanical hold downs and a dead load restraining 

force.  These modification factors will be used to modify the nominal unit 
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shear capacity values in SDPWS.  These modification factors are presented 

for both allowable stress design (ASD) and load and resistance factored 

design (LRFD) methods. 

5. For equitable designs providing the same level of safety, the IRC 2009 should 

publish the required dead load restraining force to achieve the unit shear 

design value used.  This restraining force should be clearly stated as a design 

requirement for the use of the prescriptive method.  

6. Finite element models should always include the effect of the boundary 

conditions, restraining force, and the connection behavior of the studs-to-

top/sole-plate connections. 

1.4 Organization of Thesis 

Chapter 2 provides a literature review of codes and standards applicable to this 

thesis; previous research regarding partially restrained wood shear walls; finite element 

modeling; and reliability studies.  The background of the prescriptive wall bracing 

methods, design philosophy, and engineered alternate design methods are reviewed to 

provide the reader with a basis for this thesis.  Finite element modeling methods, nail 

strength and load deformation modeling, as well as the nail yield limit theory are 

reviewed.  A reliability analysis of wood shear walls with wind loads conducted by van 

de Lindt is also presented. 

In Chapter 3 a summary of the wood shear wall testing conducted is presented.  

This includes a brief overview of both ASTM E72 and E564.  Summary of data obtained 

from the test program that is used for both the finite element modeling and the reliability 

study is presented here. 
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In Chapter 4 a finite element model is presented.  This model includes a non-

linear finite element model created to simulate the behavior of partially restrained wood 

shear walls and shear walls restrained with a mechanical hold down.  This model 

utilizes nonlinear orthogonal spring pairs using data obtained from the tests conducted.  

Results from the finite element model are presented at the end of CHAPTER 4. 

In Chapter 5, a systematic reliability analysis is presented.  This analysis 

concludes with a Monte Carlo simulation including four random variables: wind load, 

dead load, wall unit shear capacity, and specific gravity.  A partial restraint factor was 

developed by calibrating the bias factor with the M-C simulation so that a constant 

reliability index of 3.25 is obtained for all restraint conditions for the 4’x 8’ wood shear 

wall. 

A discussion regarding the intent and use of both ASTM E72 and E564 is 

presented in Chapter 6.  This describes the limitations of ASTM E72 and the 

appropriateness of its use for determining design values. 

Conclusions of this thesis are presented in Chapter 7.  A brief summary of this 

thesis is included here as well as suggestions for future research.  The calibrated partial 

restraint factors for both allowable stress design (ASD) and load and resistance factored 

design (LRFD) are summarized.   
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CHAPTER 2 

LITERATURE REVIEW 

In this chapter a general introduction is given to the current design requirements 

for intermittent brace walls in residential construction, a review of previous reliability 

studies, a review of previous finite element modeling methods, and a review of recent 

IRC wall testing.  Specifically, the prescriptive requirements of the 2009 International 

Residential Code (IRC) is discussed as well as requirements for an alternate 

engineered design utilizing the 2009 International Building Code (IBC); Minimum Design 

Loads for Buildings and Other Structures (ASCE 7-05); and the 2005 Special Design 

Provisions for and Seismic (SDPWS) (AF&PA SDPWS). 

2.2 2009 IRC Requirements 

2.2.1 Development of the 2009 IRC Requirements 

The 2009 IRC is the result of years of empirical methods.    “The art and science 

behind accurately understanding conventional wall bracing is still considered to be in its 

infancy and subject to disparate interpretations, even though it has been studied at 

various times since the early 1900s and especially in recent years,” (Crandell 2007).   

The development of the 2009 IRC wind load provisions occurred under the 

direction of an Ad Hoc Committee-Wall Bracing (AHC-WB).  The AHC-WB was created 

by the International Code Council (ICC).  The AHC-WB committee had the support of a 

second group led by Dan Dolan, PhD, which was supported by The Building Seismic 

Safety Council (BSSC) (Crandell and Martin 2009). 
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The 2009 IRC wind bracing provisions attempt to equate historic construction 

methods and performance with an engineered design.  The historic construction method 

dictated that the brace panels do not require mechanical hold downs in addition to the 

prescribed connections. Therefore, the committee agreed to develop a net brace wall 

capacity based on a fully restrained wall capacity using the following equation (Crandell 

and Martin 2009). 

BWC = FRSWC x NAF 

Where, 
 

BWC = Braced wall capacity 
FRSWC = Fully-restrained wall 
capacity 
NAF = Net adjustment factor 
 

The net adjustment factor contained a factor for the partially restrained shear walls’ 

(PRSW) capacity as well as a whole house effect.  This was justified by realizing that 

PRSW have some capacity.  PRSW have been studied by several researchers (Ni and 

Karacabeyli 2000, Salenikovich 2000, Dolan and Heine 1997).  Reduction in shear 

capacity of an unrestrained shear wall can be as great as 67% (Ni and Karacabeyli).  

This reduction will be discussed later in the unrestrained shear wall discussion. 

For a PRSW the dead load of the structure and building finishes can provide the 

restraint.  The magnitude of this restraint is impossible to determine for a code 

application that can be used in any residential structure.  The AHC-WB committee, in 

fact, could not agree upon the value for this partial restraint (Crandell and Martin 2009). 

The whole house factor is a factor that recognizes the additional strength of a 

residential structure due to redundancies, bracing that is either ignored or does not 

meet the prescribed brace wall requirements, or even building finishes that wouldn’t be 
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considered in an engineering analysis.  Some may refer to this as a “system effect” 

factor.  According to Crandell and Martin 2009, five whole house tests were reviewed to 

determine the value of this factor when compared to the IRC bracing method.  Three of 

these tests are described (Crandell and Martin 2009).  They are the BRANZ, CSIRO, 

and CUREe/FEMA.  The ratio of tested values (failure) to the predicted (ultimate) values 

ranged from 1.5 (discounting interior partitions) to 3.1.  The Dolan-AHC-WB committee 

could not reach a consensus on either of the two factors, but did agree to one factor, 

1.2, which includes both factors (Crandell and Martin 2009).  Crandell reported the 

factors discussed by the committee and they are shown here in Table 4. 

Table 4: Nominal Shear Strength Adjustment Factors 
for Conventional Wall Bracing 

Walls Supporting: Partial-Restraint 
Factor 

Whole Building 
Factor 

Net Adjustment 
Factor 

Roof Only 0.8 1.5 1.2 
Roof + One Story 0.9 1.33 1.2 

Roof + Two Stories 1.0 1.2 1.2 
1. These factors are limited to residential construction in accordance with the 2009 IRC and 

bracing methods that have a nominal shear strength “capped” at about 700 plf. 

 

Therefore, a PRSW has a 20% advantage to a fully restrained shear wall that 

does not include the whole building factor.  The committee placed a further limit on the 

brace wall requirements.  This limit is that the net uplift at the top of the brace wall shall 

not exceed 100 plf.  If this is exceeded, then an additional connection at the base of the 

wall is required. 

2.2.2 2009 IRC Requirements 

The IRC has several options for providing lateral bracing to a residential 

structure.  The lateral forces on the structure are resisted by braced wall panels.  The 
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braced wall panels can be constructed with either continuous sheathing methods or 

intermittent bracing methods.  Intermittent braced wall panels can include diagonal let-in 

bracing, diagonal sheathing, horizontal siding, or portals.  The option which is the focus 

of this thesis is intermittent braced wall panel construction, as shown in Figure 2, 

utilizing the Wood Structural Panel (WSP) bracing option.  The WSP option can be 

thought of as a shear wall but is constructed differently than traditional engineered wood 

shear walls, i.e. they may not have a special hold down connector. 

 

Figure 2:  IRC Braced Wall Panel Location (IRC) 

The IRC provides a prescriptive method of lateral bracing for residential 

structures.  The bracing requirements are dependent upon both wind loads and seismic 

loads.  For each lateral load condition, the IRC tabulates the total length of braced wall 

panels per braced wall line as well as braced wall line spacing.   A braced wall line is a 

wall selected by the designer to contain braced wall panels.  The designer then selects 

the braced wall panel type.  The braced wall panels must then be located within the 

Figure 602.10.1.4(2) 
Excerpted from the 2009 International Residential Code, Copyright 2009. 
Washington, D.C.: International Code Council. 
Reproduced with permission.  All rights reserved.  www.ICCSAFE.org 
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braced wall lines as specified in the IRC.  For WSP, the minimum panel width for the 

intermittent brace panel method is 48” and the minimum panel thickness is 3/8”.  This 

thesis will be limited to wind loading and not seismic loading. 

 

Figure 3:  IRC Braced Wall Panel Length 

The IRC tabulates the braced wall panels by basic wind speed varying from 

85 m.p.h. to 110 m.p.h.  A series of adjustment factors are then applied to the tabulated 

length of brace wall panels.  These factors include: exposure and building height 

adjustment; roof to eave height adjustment; number of braced wall line adjustment (to 

account for increased shear on braced wall lines from continuous diaphragms, see 

discussion below); and an adjustment factor if gypsum or equivalent is not installed on 

the interior face of the wall panel.  An example of a required length of a braced wall line 

is given in Figure 3. 

The IRC also specifies all of the connections required for the braced wall panels 

as well as the connections of the structure to the wall panels.  This includes the 

sheathing fastening to the studs, the studs to the plates, the sole plate to the floor or 

8'Say     L ←=××××= '94.74.19.07.00.19'

Wind Speed = 90 mph → 9’ Braced Panel Length Required 
Exposure B, 1 Story, 8 ft walls → Multiply x1 
Roof Eave-to-Ridge Height <6’ → Multiply by 0.7 and 0.9 
No gypsum on interior → Multiply by 1.4 
 
Required Braced Panel Length including all factors: 

From IRC Section R602.10.1.2 and Table R602.10.1.2(1) 
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foundation, and the roof or floor to the wall top plate.  The sheathing fastening is typical 

for a braced wall panel and ordinary sheathing. 

The IRC bracing method distributes the lateral loads equally amongst brace wall 

panels.  This is because it is assumed that the braced wall lines have the minimum 

lengths of brace wall panels and therefore are of equal stiffness.  Whole building tests 

have shown that roof systems behave more like rigid diaphragms than flexible 

diaphragms (Crandell and Kochkin 2003).  Therefore, the IRC includes an adjustment 

factor to increase the length of the braced wall when two or more brace wall lines exist.  

This factor is 1.3 for 3 braced wall lines, 1.45 for 4 braced wall lines, and 1.6 for 5 or 

more braced wall lines. 

Aside from the combined partial restraint and whole building factor of 1.2 

discussed earlier, the IRC uses a rational approach.  For WSP, the nominal brace wall 

capacity used is 700 plf which includes 200 plf capacity for ½” gypsum applied to the 

interior face (Crandell and Martin 2009).  Using allowable stress design (ASD), a factor 

of safety of 2 was applied to the nominal value.  This is in accordance with the 2005 

Special Design Provisions for and Seismic (AF&PA SDPWS). 

2.3 Differences between Prescriptive and Engineered Solutions 

 The major difference between the prescriptive design of the 2009 IRC and a 

rational design using SDPWS is that the IRC applies a combined partial restraint and 

whole building factor of 1.2 discussed earlier.  An engineered design typically neglects 

any applied dead load to the wall and requires a special hold down connector.  This is 

illustrated in Figure 4. 
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Figure 4:  Engineered Shear Wall Restraint Methods 

In order to resist the uplift force in a WSP shear wall, one of three methods must 

be present for equilibrium.  These are a special hold down connector, a dead load force 

applied at the tension chord, or some other dead load applied along the wall.  It is 

common engineering practice to provide a special hold down connector neglecting any 

dead loads.   This assures that there is a proper load path to resist the overturning of 

the wall.  If a dead load occurs directly over the tension chord, this could be used to 

restrain or partially restrain the wall, but it has a major limitation for an engineered 

approach.  This limitation is the load combination that requires using only 60% of the 

dead load to resist wind overturning forces (ASCE 7).  This 40% reduction can have a 

huge impact on the uplift resistance.  For the last option, special fastening of the wall 

sheathing is required.  From a mechanics analysis of the wall, the sheathing resists the 
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shear and therefore the sheathing must be resisted from overturning.  Therefore, it is 

necessary to transmit, for example, a uniform dead load applied to the top of the wall 

from the wall studs to the sheathing.  This may require closer fastener spacing along the 

studs near the end of the wall than would otherwise be specified if a mechanical 

restraint was applied directly to the tension chord. 

These differences in design approaches make a huge difference when trying to 

add a braced wall line or a complete bracing design based on SDPWS to a residential 

structure that doesn’t meet the criteria to use the prescriptive method.  Although the 

whole building factor may be different for a building that meets the prescriptive criteria 

than for a building that may have larger wall openings or otherwise doesn’t meet the 

prescriptive criteria, there should be some whole building factor that applies to a design 

based on SDPWS as well.  Also, what effect does the 40% reduction in dead load to 

resist overturning per the code imposed load combinations have on the reliability of the 

prescriptive system without hold downs? 

2.4 Actual Wind Load on a Shear Wall 

There are several factors that determine the actual wind load on a shear wall.  

The first main factor is on the load side of the design equation.  There are several 

variables to consider in determining the wind load using ASCE 7.   The second main 

factor is the load path.  A simple analysis may consider flexible diaphragms, while a 

more complex analysis may consider a rigid diaphragm. 

To determine the wind load on a structure, the location must be known as well as 

site conditions.  ASCE 7 provides a wind speed map for the United States for the 

building designer to determine the nominal 3 second wind gust at a height of 33 feet 
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above the ground for an exposure C terrain category with a 2% probability of 

occurrence.  ASCE 7 provides two methods to calculate the design wind pressure, the 

simplified procedure and the analytical procedure.  Either procedure relies upon the 

following factors to adjust wind for specific site conditions: 

• Exposure Adjustment 
• Wind Directionality 
• Topographic Adjustment 

 
Building specific adjustments are also required.  These include: 

• Height Adjustment 
• Importance Factor 
• Pressure Coefficient 
• Gust Factor 

 
Of the adjustments noted, only the exposure, topographic, and height would vary 

from building to building for a residential structure.  Of course, the wind speed can vary 

as well depending upon the location.  However, more than 90 percent of conventional 

building stock is located in an Exposure B category based on experimentally controlled 

building assessments (Crandell and Kochkin 2003).  Additionally, high wind regions 

typically require additional bracing and detailing to prevent cladding breaches.  

Therefore, the limit of this thesis will be for a nominal wind speed of 90 mph and an 

Exposure B category. 

ASCE 7 further adds a requirement to design wind pressures, that the minimum 

wind pressure shall be 10 psf acting normal to the projected area of the structure in the 

direction of the wind, as an additional load case.  According to the spreadsheet 

calculations available to support the 2009 IRC code change (RB148), the required  

10 psf minimum wind load was not used for the prescriptive method in the IRC (FSC).  
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This can make an appreciable difference in the total wind load for this type of structure 

with this exposure category. 

Residential structures typically don’t have ideally constructed diaphragms 

(Crandell and Kochkin 2003) nor are they simple rectangular diaphragms.  For more 

contemporary homes, it is not uncommon to have a break in the diaphragm such as at a 

bridge or two story room.  For these reasons, actual wall shear forces may vary 

considerably for an actual structure compared to the idealized structures of the IRC 

prescriptive design.  Therefore, there may be appreciable differences in the actual load 

on a braced wall panel when a structure-specific engineering analysis is performed then 

the simplified analysis used for the prescriptive method of the IRC. 

2.5 Partially and Unrestrained Shear Walls 

A great deal of shear wall testing has been performed since as early as 1929 

(Crandell and Kochkin 2003).  So much testing and studying has occurred since 1983 

that John van de Lindt, PhD prepared a paper titled Evolution of Wood Shear Wall 

Testing, Modeling, and Reliability Analysis:  Bibliography (van de Lindt 2004)  This 

document tabulates much of the research that was performed, but is not intended to be 

inclusive of all work. 

The beginning of the acceptance of an unrestrained shear wall in the United 

States seems to stem from the perforated shear wall (PSW) method that the American 

Forest & Paper Association/American Wood Council (AF&PA/AWC) discovered from 

Japan (Crandell 2007).  Although the PSW method did require hold downs at each end, 

the method allowed for full height openings within the shear wall.  Previous to this 
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method, the shear wall was considered a series of shorter shear walls, called a 

segmented wall, with each segment requiring hold downs. 

The PSW method still didn’t correlate with conventional construction practices of 

not providing hold downs.  Thus research began to develop a design method to 

construct shear walls without hold downs (Crandell 2007).  This included using corners 

as restraint (Dolan and Heine 1997) and PRSW (Ni and Karacabeyli 2000).  Walls with 

IRC prescribed anchorage compared to full restraint (mechanical hold down) and partial 

restraint by an applied load was conducted to compare the difference between 

monotonic and cyclic loading (Seaders 2004).  The PRSW method (Ni and Karacabeyli 

2000) is of interest since it presents both a mechanics-based method and an empirical 

method to determine the capacity of the wall under partial restraint.  Also of interest is 

the IRC prescribed anchorage monotonic and cyclic comparison study. 

Many factors can affect the shear capacity of a PRSW (Crandell and Martin 

2009).  These conditions include: 

• Length of wall extending beyond either end of the bracing element 
• Wall components or opening conditions adjacent to a bracing element 
• Support conditions (framing assembly stiffness and dead load above the 

bracing element) 
• Strength of bracing method relative to strength of conventional framing 

and connections providing restraint to a given brace panel at its 
boundaries. 

• Contribution of non-structural components and non-compliant bracing 
elements in a whole house test. 

The mechanics-based method derived in Ni and Karacabeyli (2000) assumes 

that some of the boundary fasteners in the sole plate are used only for the uplift 

resistance while the remaining fasteners resist the shear.  The result is the reduction 
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factor, α, which is multiplied by the fully restrained shear capacity of a wood shear wall. 

Eq. 1 is presented in Graph 1.  Note that the relationship is nearly linear: 

γ−γ+φγ+=α 221
 

Eq. 1 

Where, 

 
L

H
=γ  

NMC

P
=φ  

H = height of the shear wall 
L = length of the shear wall 
P = uplift restraint force on end stud of a shear wall 

segment 
M = total number of nails along the end stud 
CN = lateral load capacity of a single nailed joint  
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Graph 1:  Effect of Uplift Restraint on the Lateral Load Capacity of a Shear Wall Based 
on Mechanics-Based Approach (Ni and Karacabeyli 2000) 
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Using the results of both monotonic and cyclic testing, the ratio of the lateral load 

capacity of a wall with no restraint to a wall with full restraint, α, the following empirical 

relationship was determined (Ni and Karacabeyli 2000). 

3)1(1

1

φ−γ+
=α

 Eq. 2
 

This equation is presented graphically in Graph 2. 

Although Graph 2 seems to indicate that there is no uplift restraint, i.e. φ=0, the 

test method used to develop Eq. 2 used ½” diameter anchor bolts at 16” o.c. with the 

first bolt 8” from the end of the wall, providing some uplift resistance. 

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

φφφφ , End of Stud Uplift Restraint

αα αα

L=2'

L=4'

L=8'

L=16'

L=32'

 

Graph 2:  Effect of Uplift Restraint on the Lateral Load Capacity of a Shear Wall Based 
on Empirical Approach (Ni and Karacabeyli 2000) 

 The SDPWS also provides a method for designing PSW, but still requires hold 

downs at the very ends of the wall.  This method allows for unrestrained segments 

within the length of the wall. 
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Seaders (2004) specifically studied walls constructed in accordance with the IRC 

prescriptive requirements.  All of the walls tested were 8’ x 8’ with 7/16” OSB sheathing 

fastened with 8d Common nails at 6” o.c. at the perimeter edges and 12” o.c. along 

intermediate members.  The walls also had a layer of ½” gypsum on the opposite face 

to resemble a typical residential wall.  The gypsum was fastened with #6 x 15/8” bugle 

head screws at 12” o.c. at the perimeter edges and along intermediate members.   This 

study was of seven unstrained shear walls monotonically loaded; eight unrestrained 

shear walls cyclically loaded; one Partially Restrained Shear Wall (PRSW) with a 2.41 K 

load concentrically placed; one Partially Restrained Shear Wall with a 4.00 K load 

concentrically placed; two Fully Restrained Shear Walls (FRSW) monotonically loaded; 

and two Fully Restrained Shear Walls cyclically loaded.  The restraining forces were 

applied at the quarter points of the wall on a steel spreader bar.  The results of the 

monotonic tests are presented in Table 5. 

Table 5:  Summary of Test Data (Seaders 2004) 

 Monotonic 

# of Tests 

Anchorage 

N=7 

Unrestrained 

N=1 

PRSW 

N=1 

PRSW 

N=2 

FRSW 

Load Units Average COV    

PDL lb   2405 4002  
PPeak lb 2169 14.9% 3062 4071 5472 
PPeak plf 271  383 509 684 

There are three notable differences between Seaders’ (2004) research and Ni 

and Karacabeyli’s (2000).  First, Seaders (2004) anchored the wall in accordance with 

the IRC.   The anchorage consisted of one ½” diameter anchor 12” from each end.  This 

is the maximum distance from the end of the wall allowed by the IRC and results in bolt 
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spacing of 6’, the maximum spacing allowed by the IRC.  Second, Seaders (2004) used 

gypsum on the opposite face of the wall than the WSP.  The intent was to apply the 

dead load of the gypsum rather than add additional stiffness from the gypsum.  It is 

important to note that the fastener spacing in the gypsum was 12” o.c. throughout 

compared with 7” o.c. specified in the IRC.  Third, Seaders (2004) compared the 

variability of monotonic testing with the variability of cyclic testing while Ni and 

Karacabeyli (2000) proposed a method of determining the capacity of an unrestrained 

wall. 

It is very important to point out that both Seaders (2004) and Ni and 

Karacabeyli’s (2000) work considered the full restraint capacity as the capacity of the 

shear wall with a mechanical hold down at the base of the wall.  Therefore, Ni and 

Karacabeyli’s (2000) partial restraint factor, Eq. 2, is derived from the capacity of the 

wall when a mechanical hold down is used at the base of the wall. 

2.6 Special Design Provisions for Wind and Seismic (2005) 

The SDPWS (2005) provides design methodologies for wood diaphragms and 

shear walls and contains nominal ultimate unit shear capacities for shear walls 

constructed with WSPs.  These capacities are tabulated for various thickness sheathing 

and fastener spacing for both wind and seismic.  The values in these tables are 2.8 

times the values given in APA Research Report 154 (2004), the source of the 

capacities.  APA Research Report 154 (2004) will be discussed later.  SDPWS (2005) is 

also the source of the semi-rational design values for the 2009 IRC. 

Of interest to this research is the capacity of the 15/32” WSP fastened with 8d 

Common nails at 6” o.c. along the edges and 12” o.c. at the intermediate members.  
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Also, for comparison purposes of previous testing (Seaders 2004, SBCRI 2010) the 

capacity of 7/16” WSPs fastened with 8d Common nails at 6” o.c. along the edges and 

12” o.c. at the intermediate members is also of interest, as well as 3/8” panel thickness.  

The SDPWS values for these three panels are tabulated in Table 6. 

The values tabulated in Table 6 are required to be modified by either a factor of 

safety, Ω, for allowable stress design (ASD) or multiplied by a resistance factor, φ, for 

load and resistance factored design (LRFD).  These values are given in SDPWS as: 

Ω=2.0 and φ=0.80 

Table 6:  Nominal Unit Shear Capacities for Wood-Frame Shear Walls (SDPWS 2005) 

 

Wind 

Panel Edge Fastener Spacing 
(in) 

Fastener Type & Size 

6 

vw
2 

Sheathing 
Material 

Minimum 
Nominal 

Panel 
Thickness 

(in) Nail (common or 
galvanized box) (plf) 

3/8” 6d 560 
7/16”

1 8d 670 

Wood 
Structural 
Panels -
Sheathing 15/32

” 8d 730 
1
Shears are permitted to be increased to values shown for 15/32” sheathing with same nailing 
provided (a) studs are spaced a maximum of 16” o.c. or (b) panels are applied with long dimension 
across studs. 

2
For framing grades other that Douglas Fir-Larch or Southern Pine, reduced nominal unit shear 

capacities shall be determined by multiplying the tabulated nominal unit shear capacity by the 
Specific Gravity Adjustment Factor = [1-(0.5-G)], where G=Specific Gravity of the framing lumber 
from the NDS.  The Specific Gravity Adjustment Factor shall not be greater than 1. 

Of further interest in SDPWS is the discussion of the resistance factor.  The 

commentary states that the “LRFD resistance factors have been determined by a ASTM 

consensus standard committee” (SDPWS 2005).  This statement is referring to the 

Standard Specification for Computing Reference Resistance of Wood-Based Materials 

and Structural Connections for Load and Resistance Factor Design, ASTM D 5457 



www.manaraa.com

 

 

29 

(ASTM D 5457).  The resistance factors were reportedly “derived to achieve a target 

reliability index, β, of 2.4 for a reference design condition” (SDPWS 2005). 

SDPWS also has a method for determining the capacity of intermittent bracing 

known as the Perforated Shear Wall (PSW) as mentioned earlier.  The 2009 IRC used 

the PSW method to approximate the partial restraint factor.  The PSW method in the 

SDPWS differs from Ni and Karacabeyli’s (2000) method to determine the capacity of a 

PRSW. 

SDPWS uses a shear capacity adjustment factor, Co, to modify the nominal 

shear capacities of the full height sheathed wall segment which is a function of the wall 

openings and the length of the wall.  For intermittent shear walls, Co is determined 

assuming that all openings are full height. It is tabulated in SDPWS as a function of the 

percent of full-height sheathing.  The tabulated values of Co are calculated as shown in 

Eq. 3. 

height wall

openings of area total

ratio area sheathing

1

1

23

sheathing height-full of  widththe of sumL

 wallshear of length total

Sheathing Height-Full of %FH %

where,

FH %

F

i

0

=

=

=
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=

=
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Eq. 3 
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The IRC originally used a modified version of Eq. 3 to estimate the partial 

restraint factors indicated in Table 4.  The modified version used F=r/(2-r) deemed to be 

more accurate and less conservative (Crandell 2007).  The lowest value of Co tabulated 

in SDPWS is for 10% full-height sheathing and is equal to 0.36, which for 4’ shear walls 

equates to a 5% restraining force using Ni and Karacabeyli’s (2000) method.  For Co to 

equal 0.8 as used in the IRC, 88% of the brace wall line would have to be sheathed at 

full height. 

The PSW requires restraints at the very ends of the walls, as does a fully 

restrained wall.  These restraints can be mechanical hold downs or dead load.  

Additionally, the sole plate of each full height segment must be anchored to the 

foundation for a uniform uplift force equal to the unit shear (SDPWS).  This is not a 

requirement of the 2009 IRC. 

2.7 Voluntary Product Standard 

The National Institute of Standards and Technology (NIST) publishes the 

Voluntary Product Standard PS 2-04 titled Performance Standards for Wood-Based 

Structural-Use Panels (NIST 2004).  This voluntary standard specifies minimum ultimate 

unit shear capacities that panel manufacturers must meet.  The standard utilizes the 

ASTM E-72 test procedure.  The minimum unit shear strengths listed in this document 

are 2.8 times the nominal values published in APA Research Report 154 (2004).  This is 

the source of the 2.8 value used in the SDPWS. 

For a WSP to comply with the standard, two tests are required.  Both tests must 

pass the minimum specified strength of the standard.  Furthermore, both test results 

must be within 10% of each other.  If both tests pass the strength but are not within 10% 
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of each other, then a third test may be performed.  The lowest two of the three tests 

must then exceed the strength requirement and must be within 10% of each other.  The 

standard does not have values for all nail spacings used in the SDPWS. 

2.8 APA Research Report 154 

APA-The Engineered Wood Association publishes APA Research Report 154 

titled Wood Structural Panel Shear Walls (APA 2004).  The source for the SDPWS 

tabulated nominal ultimate unit shear values is from the base values in the APA 

Research Report 154 (2004).  The APA Research Report 154 (2004) values match the 

tabulated nominal ultimate unit seismic shear values in the SDPWS.  The wind values 

tabulated in the SDPWS are 40% greater than APA Research Report 154 (2004) 

values. 

The nominal unit shear values tabulated in APA Research Report 154 (2004) are 

historic values from the 1958 to 1964 Uniform Building Codes.  APA Research Report 

154 (2004) provides a comparison of the nominal unit shear values to previous tests 

and is shown here in Table 7.  The target design shear is the nominal unit shear values 

tabulated in APA Research Report 154 (2004) or 1/2.8 the tabulated nominal ultimate 

unit shear values for wind tabulated in SDPWS and the nominal minimum ultimate unit 

shear values tabulated in PS-2 (2004). 

The comparison in Table 7, noted as the load factor, is between the average test 

results and the target design shear and ranges from 2.1 to 4.1.  Table 7 also indicates 

the number of tests used for the comparison as well as the minimum, maximum, and 

average ultimate load.  Of interest is the 15/32” rated sheathing with 8d nails spaced at  

6” o.c.  The table provides the results of seven tests with an average ultimate strength 
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of 913 plf; a minimum strength of 689 plf; and a maximum strength of 1033 plf.  Note 

also that the target design shear for this wall is 260 plf which results in a load factor of 

3.5.  The target design shear is equal to the 730 plf tabulated in SDPWS (rounded up 

from 728 plf) divided by 2.8 as discussed previously, or 260 plf. 

Table 7:  APA Test Comparisons (APA 2004) 

 
Reprinted with permission from APA Research Report 154, Wood Structural Panel Shear 

Walls, Form No. Q260C by APA-The Engineered Wood Association. 
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2.9 Shear Wall Strength and Computer Modeling 

Shear wall strength can be either calculated (mechanistic) or determined from 

testing (hysteresis).  A mechanistic model is provided in APA Research Report 154 

(2004) for determining the capacity of a fully restrained shear wall.  This model is based 

on the nail capacities in the NDS (2005).  The mechanistic model simply resolves the 

applied shear along the sole plate and the uplift force into the tension stud through the 

fasteners in a unidirectional shear in the direction of the sole plate and tension chord 

respectively.  Cyclic testing is used to determine the nonlinear load-deformation 

response of a shear wall.  From this testing the hysteresis curves are produced.  The 

backbone curve, also referred to as the envelope curve, is formed from the peaks of the 

hysteresis curves.  The backbone curve, shown in Figure 5, closely approximates the 

nonlinear load deformation curve produced from a monotonic test (van de Lindt 2003). 

 

Figure 5:  Hysteresis Curve Example 
 

0.0 

0.0 

Backbone Curve 
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The CASHEW program was developed by CUREE (California Universities for 

Earthquake Engineering) to predict the load-displacement response for cyclic and 

monotonic loading (Folz and Filiatrault 2001).  The program uses 10-parameter nail 

data to define the hysteresis loop as shown in Figure 6.  Nail data is used from other 

research to define the 10 parameters (van de Lindt and Walz 2003). 

 

 

Figure 6:  Hysteretic Response of a Sheathing-to-Framing Connector 

This program and model has been used in several seismic studies for shear wall 

modeling.  The program was altered to add pinching effects in a reliability model by 

van de Lindt and Walz (2003). 

It is also noted that the CASHEW User’s Manual provides an example comparing 

it to tests performed by Durham.  The CASHEW results for the monotonic loading were 

26% greater the actual shear wall test result (Folz and Filiatrault 2000). 

Folz and Filiatrault 2000 
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2.9.1 Finite Element Modeling 

Several studies have been done using finite element 

modeling (FEM) of wood shear walls.  These studies have 

evolved over the years and can be rather simplistic models 

or more complex models that account for every connection 

in the wall.   The programs used for the finite element 

include commercial programs such as ABAQUS and ANSYS.  Others have developed 

programs as well, such as SHWALL and CASHEW. 

This work is best summarized by Cassidy (2002) and Judd (2005). The most 

common models include beam elements for framing members, four and eight node 

plane stress elements for sheathing, and two orthogonal nonlinear springs (or spring 

pair), Figure 7, to model the connections from the sheathing to the framing members 

(e.g. Dolan and Foschi 1991; Folz and Filiatrault 2001; Cassidy 2002; Judd 2005). 

 Of the referenced examples, Judd, using ABAQUS, created an oriented spring 

pair as a user element.  Judd recognized that for nonlinear springs, the bilinear spring 

isn’t equivalent to a single one dimensional spring.  For monotonic loading, the peak 

load and displacement can be accurately calculated with a bilinear spring element.   

However, the total energy absorbed by the system is not accurate with the bilinear 

spring, since the load deformation curve does not completely represent the behavior of 

the actual wall (Cassidy 2002).  The increased resultant stiffness overestimates the total 

energy absorbed. 

The most common method of modeling the framing connections is with pinned 

joints (e.g. Judd 2005, CASHEW).  The results of these models reasonably match the 

1 

1’

 

Figure 7:  Spring Pair 
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test walls that they were developed for, but this type of model doesn’t accurately 

capture the actual behavior of the wall.  Cassidy (2002) used another spring pair to 

model the behavior of the stud to plate connection.  The spring pair had differing 

stiffness for the load direction. 

Using a typical stud-to-plate connection of two 16d Common nails, Cassidy 

(2002) used a lateral stiffness of 12,000 lb/in which corresponds to results published by 

Dolan et. al. (1995).  Cassidy (2002) found that this parameter had “very little effect on 

the overall load-displacement response of the wall.”  Cassidy (2002) used a nonlinear 

vertical stiffness.  For compression, a vertical stiffness of 41,000 lb/in was used which 

corresponds to his reported test results for the crushing of the wood sole plate.  Cassidy 

then used a tension stiffness of 100 lb/in.  This was an assumption by Cassidy.  The 

vertical tension stiffness of course relates to nails installed in the end grain of the stud 

loaded in withdrawal.  According to the NDS Commentary (AF&PA 2005), there can be 

up to a 50% reduction in nail withdrawal strength into end grain, and coupling this with 

seasoning, the values are deemed too unreliable and are prohibited.  However, there is 

definitely some resistance and stiffness in this connection; although not reported to the 

author’s knowledge. 

2.9.2 Sheathing Nail Modeling 

Sheathing nail modeling is considered in two ways.  The first is considering the 

yield limit equations from the NDS (AF&PA 2005).  The second is considering the load 

deformation relationship of the fasteners.  The latter is of interest for finite element 

modeling while the former is helpful in the understanding of allowable nail capacities 

published in the NDS. 



www.manaraa.com

 

 

37 

2.9.2.1 NDS Yield Limit Equations 

The yield limit equations in the NDS (AF&PA 2005) provide a method to calculate 

nail connection strength based on limit states or modes of failure.  The yield limit 

equations are a mechanics based method.  Technical Report 12 (AF&PA 1999) 

expands on the yield limit equations used in the NDS (AF&PA 2005).  The modes of 

failure of a dowel-type connection are “uniform bearing under the fastener, rotation of 

the fastener in the joint without bending, and development of one or more plastic hinges 

in the fastener.” (AF&PA 1991).  Technical Report 12 (AF&PA 1999) provides the basis 

for calculating the ultimate nail capacity for each mode of failure by considering the 

specific gravity of the material, the thickness of each member, any gap that may exist 

between the members, and the yield strength of the fastener.  This is not the failure 

load, but is rather the ultimate load.  The failure load occurs after the ultimate load is 

reached. 

For single shear, there are four modes of failure to consider, Figure 8.  These 

modes are briefly described and explained here.  They are based on no gap between 

the members. Additionally, Technical Report 12 (AF&PA 1999) provides methods for 

calculating the failure load at the proportional limit, the 5% offset limit, and the ultimate 

limit.  Only the ultimate limit is presented here. 



www.manaraa.com

 

 

38 

 
Reprinted with permission from Technical Report 12, General Dowel Equations for 

Calculating Lateral Connections by the American Wood Council, Leesburg, VA 
 

Figure 8:  Connection Yield Modes 
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2.9.2.1.1 Mode Im and Is 

The limit state for failure mode I is either wood bearing in the main member (Im) 

or wood bearing in the side member (Is) with no rotation or yielding of the fastener.  

Mode I strength is: 

Im mm lqP =  Eq. 4 

Is ss lqP =  Eq. 5 

2.9.2.1.2 Mode II 

The limit state for failure mode II is side and main member wood bearing with 

rigid rotation of the fastener, but no yielding of the fastener.  Mode II strength is: 

II 
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2.9.2.1.3 Mode IIIm and IIIs 

The limit state for failure mode III is either main member bearing and yielding of 

the fastener in the side member (IIIm) or side member bearing and yielding of the 

fastener in the main member (IIIs).  Mode IIIm and IIIs strength is defined by Eq. 6 where, 
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2.9.2.1.4 Mode IV 

The limit state for failure mode IV is yielding of the fastener in both the side and 

the main member.  Mode IV strength is defined by Eq. 6 where, 

IV 
ms qq

A
2

1

2

1
+=  0=B  ms MMC −−=  

 

For all modes, the following definitions are used, 

P = nominal lateral connection value, lb 
ls = side member dowel bearing length, in 
lm = main member dowel bearing length, in 
qs = side member dowel bearing resistance = FesD, lb/in 
qm = side member dowel bearing resistance = FemD, lb/in 
Fes = side member dowel bearing strength, psi 
Fem = main member dowel bearing strength, psi 
D = dowel shank diameter, in 
Fb = dowel bending strength, psi 
Ds = dowel diameter at max. stress in side member, in 
Dm = dowel diameter at max. stress in main member, in 
Ms = side member dowel moment resistance = Fb(Ds

3/6) 
Mm = main member dowel moment resistance = Fb(Dm

3/6) 
Fe = 0.8 x 11735G1.07/D0.17, psi (parallel to grain) 
G = specific gravity 
Fb = Fb, ult, psi 

 

All of the limit states must be checked to determine the failure load of the 

fastener.  The failure load is then the least of modes Im, Is, II, IIIm, IIIs, and IV. 

2.9.2.2 Load Deformation of Nails 

Several methods for modeling the load deformation have been developed over 

the years.  According to Judd (2005), these range from power curve (Mack 1977; APA), 

logarithmic curve (McClain 1975), and exponential curve (Mack 1966; Easley et. al. 
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1982; Foschi 1977).   The most commonly used model is the exponential curve 

(Cassidy 2002; Judd 2005).  Only the exponential curve model will be discussed. 

The exponential curve was first introduced by Foschi (1974; 1977) and is shown 

in Eq. 7.  

( )











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120
P

K

eKPP  Eq. 7 

 

According to Judd (2005), 

K1 is the initial stiffness, K2 is the secondary stiffness, and P0 is the 
secondary stiffness y-axis intercept (not shown is a softening branch past 
the limiting point, where K3 is the tertiary stiffness).  Note that K1, K2, and 
K3, are physically identifiable parameters.  By defining it as a “physically 
identifiable parameter” it is intended to signify a parameter inherent 
(fundamental) to behavior (such as stiffness) that is not specific to any 
particular equation, in contrast to a parameter that is only a modifier of the 
equation, and thus indirectly related to behavior. 
 

This equation was modified by Dolan (1989) to include a softening branch 

beyond the point of failure.  Further modifications were made by Folz and Filiatrault 

(2001) by defining a failure displacement, δfail, terminating the softening branch.  The 

final resulting equation is shown in Eq. 8 and graphically in Graph 3. 

( )

( )( )

fail

failultultult

ult

,

KPP

δδ
P

K
expKP

δ>δ

δ≤δ<δδ−δ+=

≤














 δ−
−δ+

 if 0              

 if ,           

 if , 1               

3

0

1
20

 Eq. 8 

 



www.manaraa.com

 

 

42 

Graph 3:  Nail Deformation Model 
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2.10 Reliability Studies 

Reliability studies have been conducted of wood shear walls for both seismic  

(van de Lindt 2004) and wind loads (van de Lindt and Rosowsky 2005).  Of interest to 

this research is the wind load reliability. 

The reliability analysis by (van de Lindt and Rosowsky 2005) used shear wall 

construction methods specified in the “Standard for Load and Resistance Factor Design 

(LRFD) for Engineered Wood Construction” AF&PA/ASCE 16-95 and used a static-

pushover analysis using the computer program CASHEW (Folz and Filiatrault 2001) to 

determine the monotonic load-deflection behavior (van de Lindt and Rosowsky 2005).  

The reliability index, β, was found to range from 3.0 to 3.5 with a mean of 3.17 and a 

COV = 0.05 (van de Lindt 2005). 
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Wind velocity is modeled as a Gumbel distribution or Type I (Ellingwood et al, 

1980).  This distribution is an extreme value distribution which is asymptotic with a 

Cumulative Distribution Function (CDF) given as the double exponential function shown 

in Eq. 9 (Ang and Tang 1975):  

( ) ( )( )[ ] ∞<<∞−−α−−= xuxexpexpxFX                  Eq. 9 

Although the wind velocity has a Type I distribution, this doesn’t necessarily mean that 

the wind load has a Type I distribution since the wind load is a function of the velocity 

squared.  However, this relationship was studied considering the other random 

variables (pressure coefficients, exposure factor and gust factor) that influence the wind 

load and it was determined that the probability distribution of wind load is also a Type I 

distribution (Ellingwood et al, 1980) 

Van de Lindt used the model suggested by Ellingwood (1999).  For this model, 

the 50-year maximum wind load is modeled as a Type I random variable, shown in 

Graph 4.  The bias factor (mean-to-nominal value), including directionality effects, is 

given by: 

80.
W

W

N

=  Eq. 10 

 

where, W = mean wind load 
WN = nominal (code-specified) wind load 

 

The coefficient of variation is 0.35 (van de Lindt and Rosowsky 2005).  Van de Lindt’s 

model considered the capacity of the shear wall given in SDPWS multiplied by the 

strength reduction factor, φ, (the load with a Type I distribution) as the random variable. 

This was the only random variable used, since the resistance, computed as the ultimate 
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wall strength from CASHEW, was assumed to be deterministic as shown as the vertical 

line in Graph 5. 

 

 

Graph 4:  Probability Density Function of Shear Wall Load 

 

Van de Lindt used the limit state in its simplest form to calculate the second-

moment reliability index, β.   This limit state is shown here as: 

g(x) = R-S Eq. 11 

where g(x) is the limit state function, R is the structural resistance, and S is the load 

effect.  R could be a random variable and S could be a random variable, or they could 

be a function of several random variables.  As noted earlier, van de Lindt chose to only 

use S as a random variable and R as a constant (van de Lindt and Rosowsky 2005).  
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For the limit state shown above, failure occurs when g(x) < 0.  As shown in the shaded 

portion of Graph 5, probability of failure, pf, is the probability that g(x) < 0. 

 

 

Graph 5:  Failure Region of PDF of Shear Wall Load 

 

The reliability index, β, is the inverse of the standard normal distribution function 

and is determined by: 

( )fp−Φ=β − 11  Eq. 12 

β, shown graphically on the standard normal distribution in Graph 6 is a scale of the 

standard deviation, σ, to the probability of failure.  This allows a measure of structural 

safety for any limit state, material, or load. 

Probability of Failure, pf g(x) 
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Graph 6:  Reliability Index, β, on the Standard Normal Distribution 

 

2.11 IRC Brace wall Testing - SBC Research Institute  

The SBC Research Institute tested a 12’ x 30’ structure, Figure 9 and 

Figure 10, with IRC prescriptive intermittent walls in early 2010.  The test results are 

currently available in the SBCRI Tech Note titled 2009 International Residential Code 

(IRC) Braced Wall Panel Design Value Comparative Equivalency Testing – Braced Wall 

Panel Design Values (TN-IRC WSP 2010).  

A portion of the test results are summarized in Table 8.  There are several items 

of interest from this data.  First, for the 3/8” WSP, the average ultimate unit shear 

strength is 27% less than the IRC full restraint value and 8% less than the IRC value 

assuming the 80% PR factor.  Second, the location of the 7/16” WSP did not have much 

of an effect on the strength of the wall.  It was expected that the corners would have 

more restraint and thus would have a greater capacity.  Third, the average ultimate unit 

shear of the 7/16” WSP with partial restraint is 18% less than the IRC full restraint value 

βσ 

pf 
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and 3% greater than the IRC value assuming the 80% PR factor, but 39% less than the 

SDPWS fully restrained value. 

 

 

Figure 9:  SBC Research Institute Test Building (SBCRI) 

 

Figure 10:  SBCA Research Institute Wall Failure (SBCARI T-IRC) 
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Table 8: Summary of SBCRI Tests 

 

Wall Sheathing 
Location 

Restraint Average 
Ultimate Unit 

Shear 
(plf) 

IRC Full 
Restraint 

 
(plf) 

IRC with 
80% PR 
Factor 
 (plf) 

IRC 3/8” 
WSP 6d 

nails at 6/12 

6’ From 
Corner 

Partial – 
Building 

Dead Load 
and IRC 
Anchors 

367 500 400 

IRC 7/16” 
WSP 8d 

nails at 6/12 

6’ From 
Corner 

Partial – 
Building 

Dead Load 
and IRC 
Anchors 

412 500 400 

IRC 7/16” 
WSP 8d 

nails at 6/12 
At Corner 

Partial – 
Building 

Dead Load 
and IRC 
Anchors 

426 500 400 

IRC 7/16” 
WSP 8d 

nails at 6/12 
with hold 
downs 

6’ From 
Corner 

Fully 
Restrained 

626 6721 N.A. 

1
SDPWS value utilizing 

15
/32” and modified for G=0.42. 

 

2.11.1 SBCRI Test Results 

A comparison can be made between Seaders, SBCRI, and SDPWS modified by 

Ni and Karacabeyli’s partial restraint factor, α.  Recall that SBCRI test values are shown 

in Table 8 while Seaders’ test results are shown in Table 5.  Since Seaders’ test used 

Douglas Fir-Larch, G=0.50, and the SBCRI used Spruce-Pine-Fir, G=0.42, the Seaders’ 

values are expected to be 8% greater.  Also, Seaders added gypsum to the face of the 

wall opposite the WSP with nominal fastening that added some additional strength.  
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Therefore, the comparison shown in Table 9 provides a quick view of the differences 

without accounting for the construction differences. 

The SDPWS values shown in Table 9 are modified by the partial restraint factor, 

α, using Eq. 2.  There is a 19% error for the unrestrained (actually greater if the gypsum 

strength and Douglas Fir-Larch framing are considered) and a 23% error for the partially 

restrained.  A further comparison of Seaders’ results with the SDPWS modified by the 

partial restraint factor, α, is shown in Table 10. 

As shown in Table 10, the results of the fully restrained wall were not much 

different than the SDPWS, 6.3% error.  However, there is a large difference in the 

Unrestrained (UR) and Partially Restrained (PR) values, 25.8% for UR and up to 36.2% 

for PR.  Therefore, it appears that the partial restraint factor, α, using Eq. 2 is not 

accurate for IRC walls. 

Table 9:  Comparison of SBCRI, Seaders, SDPWS 

FR UR PR

SBCRI 412
Seaders 271

SDPWS 672 336 538
% of FR 100% 40% 61%

Expected % of FR
1

100% 50% 80%
% Error N.A. 19.3% 23.4%

1
IRC uses 0.8 for one story structure with 500 plf.

 

Table 10:  Comparison of Seaders to SDPWS 

FR UR 40% 49%

Seaders 684 271 383 509
SDPWS 730 365 600 649
% Error 6.3% 25.8% 36.2% 21.6%

PR
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The inaccuracy of the partial restraint factor, α, is most likely due to the anchor 

bolt locations.  Recall that the IRC wall is anchored with ½” diameter anchor bolts a 

maximum of 12” from the end and 6’ o.c. while Ni and Karacabeyli’s wall tests utilized 

½” diameter anchor bolts at 16” o.c. and 8” from the ends.  Therefore, some 

modification of Eq. 2 is necessary for IRC anchored walls. 

The capacity of an unrestrained 3/8” WSP shear wall constructed and anchored 

according to the IRC is unknown at this time.  If there is a correlation between the 7/16” 

and the 3/8” WSP unrestrained, then the unrestrained value of the 3/8” WSP would be 

40% of the SDPWS value or one half of the assumed 80% value that the IRC uses.  

Therefore, for a lightly loaded wall, the reliability would be much less for the IRC brace 

wall than the SDPWS fully restrained wall. 
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CHAPTER 3 

TESTING OF SHEAR WALLS 

This chapter summarizes the test procedure, test results and numerical data from 

the testing of 25 wood shear walls.  The 25 shear walls were divided into five groups of 

five walls each.  The restraint of the shear walls was set differently for all five sets to 

understand the effect of partial restraint and full restraint on the shear wall unit shear 

capacity. 

3.1 Current ASTM Test Procedures 

Two ASTM standards exist for shear wall testing.  The first is the “Standard Test 

Methods of Conducting Strength Tests of Panels for Building Construction” (ASTM 

E72-10).  The second is the “Standard Practice for Static Load Test for Shear 

Resistance of Framed Walls for Buildings” (ASTM E564-00). 

The purpose of ASTM E72 is to evaluate different types of sheathing on a 

standard wood frame.  Since the standard wood frame is the same for all sheathing 

materials, the relative difference in performance of the sheathing materials is the test 

objective (ASTM E72).  Three tests are required by this standard. ASTM E72 employs 

an 8’ x 8’ panel (two sheets of WSPs).  The frame is constructed with 2x4 studs spaced 

at 16” on center with a single 2x4 sole plate and a double 2x4 top plate.  Spaced corner 

posts are used at each end with fastening to the outside post only.  All framing material 

is No. 1 Douglas Fir or Southern Pine.  Fastening of the WSPs shall follow the 

manufacturer’s recommendations.  The standard emphasizes the importance of placing 

the fasteners exactly in the required location maintaining the correct edge distance and 
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angle (typically perpendicular to the WSP).  Figure 11 shows the frame required by 

ASTM E72. 

 

 

Reprinted, with permission, from ASTM E72-10 “Standard Test Methods of Conducting 
Strength Tests of Panels for Building Construction”, copyright ASTM International, 100 
Barr Harbor Drive, West Conshohocken, PA  49428. 
 

Figure 11:  Standard Wood Frame (ASTM E72) 

ASTM E72 also specifies the loading point, the load rate, a hold down device, 

and the points of measurement.  The load point is at the end of a timber member bolted 

to the double top plate.  The hold down device consists of two steel rods extending 
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through a bearing plate with rollers above the corner post at the end where the load is 

applied.  The rods are installed such that one is located on each side of the frame.  The 

load rate specifies application of a uniform rate of motion to three steps: 790, 1570, and 

2360 lb.  The load shall be applied at the same rate for all three steps, but the first step 

must be loaded in no more than two minutes.  Upon reaching the first load step, 

measurements are made at each measurement point and then the wall is unloaded.  

Measurements are again made after unloading to determine any permanent 

deformation.  This process is repeated for the next two load steps.   Three points of 

measurement are required for this test.  They are all horizontal measurements. One 

point is located at the end of the double top plate and the remaining two are located at 

each end of the sole plate.  The displacement measurements must be recorded to the 

nearest 0.01” 

The purpose of ASTM E564 is to evaluate the shear capacity of any type of light 

framed wall supported on a rigid foundation and to determine the shear stiffness and 

strength of the wall (ASTM E564).  The standard does not dictate a particular hold down 

device, but rather specifies the use of the same anchorage and applied axial loads 

expected in the service condition.  Similarly, the framing members and fastening shall 

be the same size, grade and construction as anticipated in actual use. 

ASTM E564 also specifies loading requirements.  Although similar to ASTM 

E72, there are some slight differences between the standards.  ASTM E564 requires an 

initial load equal to 10% of the anticipated ultimate load to be applied for five minutes to 

seat all connections.  The initial load is removed and after five minutes the initial 

readings of displacement are recorded.  The next sequence of loading is then applied in 
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intervals, or load steps, of 1/3, 2/3, and finally, the ultimate load.  All of the load steps 

are applied at the same rate which is equal to reaching the anticipated ultimate load in 

no less than five minutes.  At each of these intervals the load step is applied up to the 

specified load and held for one minute. The displacements are then recorded, and then 

the specimen is unloaded.  After five minutes of unloading, the displacements are again 

recorded.  The process is then repeated until the last load step and ultimate failure is 

reached.  Ultimate failure may be a displacement limit rather than a load limit. 

ASTM E564 provides a method for reporting both the global shear stiffness of the 

wall and the internal shear stiffness of the wall as well as the ultimate strength.  The 

internal shear stiffness of the wall does not include uplift, or rotation, of the entire wall, 

but rather only the distortion of the wall itself.  The ultimate strength is reported as an 

ultimate unit shear strength which is simply the ultimate load divided by the wall width. 

ASTM E564 requires testing a minimum of two wall assemblies.  If after testing 

two assemblies either the shear stiffness or the ultimate strength are not within 15% of 

each other, then a third test is required.  The strength and stiffness values reported are 

then the average of the two weakest specimen values. 

3.2 Wall Testing 

The following summarizes the test procedure and results of the 25 wood shear 

walls used for the reliability analysis.  The shear wall testing was conducted at the 

Structural Building Components Research institute in Madison, WI in March 2011.  The 

tests were performed in accordance with ASTM E564.  Details of the testing are 

presented in Appendix A. 
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3.2.1 Test Facility 

The SBCRI test facility has an ACLASS accreditation, Appendix B.  ACLASS is 

one of two brands of the ANSI-ASQ National Accreditation Board.  The accreditation is 

for testing full scale construction assemblies and is accredited to ISO/IEC 14025:2005.  

Of particular interest, the accreditation specifically encompasses ASTM E564 and 

ASTM E72 testing. 

The SBCRI test facility is capable of testing both single components and entire 

structures up to 30’ wide x 32’ tall x 90’ long.  Completely adjustable frames allow for a 

large variation of test configurations. 

3.2.2 Wall Construction 

3.2.2.1 Wall Matrix 

The 25 shear walls were constructed identically, except for the anchorage, and 

tested identically.  The shear walls were grouped in five groups of five walls each for the 

testing.  See Table 11 for a summary of walls tested.   Illustrations of the test setups are 

shown in Figure 12, Figure 13, and Figure 14 at the end of this chapter. 

Group A walls were tested first to determine the hold down force.  The average 

hold down force was used to calculate the restraining force for Groups B to D.  More 

details of the test program are presented in Appendix A. 
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Table 11:  Test Matrix 

 

Group A B C D E 

No. of Tests 5 5 5 5 5 
Size 4’x8’ 4’x8’ 4’x8’ 4’x8’ 4’x8’ 

OSB 
Sheathing 
Thickness 

15/32” 
15/32” 

15/32” 
15/32” 

15/32” 

2x4 Plate 
Material 

Stud Grade 
SPF-S 

Stud Grade 
SPF-S 

Stud Grade 
SPF-S 

Stud Grade 
SPF-S 

Stud Grade 
SPF-S 

2x4 Stud 
Material 

#2 Grade 
SPF-N 

#2 Grade 
SPF-N 

#2 Grade 
SPF-N 

#2 Grade 
SPF-N 

#2 Grade 
SPF-N 

2x4 Stud 
Spacing 

16” 16” 16” 16” 16” 

8d Common 
Nail Spacing 

6:12 6:12 6:12 6:12 6:12 

Restraint 
Mechanical 
Hold down 

1104 lb 
(¼ Hold 

Down Force) 

2208 lb 
(½ Hold 

Down Force) 

3312 lb 
(¾ Hold 

Down Force) 

No added 
restraint 

Anchor Bolt None 
5/8” 12” from 
load edge 

5/8” 12” from 
load edge 

5/8” 12” from 
load edge 

5/8”12” from 
load edge 

3.3 Test Results 

3.3.1 Data Results 

The hysteresis curve for a typical wall tested to failure is shown in Graph 7. 

From the test results, the ultimate unit shear capacity of each wall was found.  A 

summary of these results is shown in Table 12, including the average hold down force 

for wall Group A. The restraining force shown for wall groups B, C, and D is ¼, ½, and 

¾ of the average hold down force from Group A.  The SDPWS value was determined 

from the tabulated 730 plf which reduces to 628 plf for SPF-S (G=0.36).  The Report 

154 value was determined from APA Report 154 which tabulates an average fully 

restrained ultimate unit shear capacity of 913 plf, which reduces to 786 plf for SPF-S 

(G=0.36). The species reduction factor is (1-(0.5-0.36)) = 0.86.  The restraining force for 
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SDPWS and APA Research Report 154 is the unit shear multiplied by the wall height of 

8 feet.  The normalized section indicates the fraction of the fully restrained hold down 

force, calculated from the APA Research Report 154 average ultimate unit shear value, 

and the resulting fraction of the Report 154 ultimate value. 

Graph 7:  Hysteresis Curve for Wall A1 
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The load deformation curves tor the five different wall sets were averaged (Graph 

8).  Note the difference in the behavior of Wall A, the wall type with a mechanical hold 

down, compared with the other partially restrained walls.  Also note that there is nearly a 

linear relationship between the peaks of Wall B, Wall C, and Wall D - the three walls 

with an applied dead load for restraint.  Considering Walls B-E, the relationship is no 

longer linear, as illustrated in Graph 8. 

In addition to the wall ultimate unit shear capacity and hysteresis curve, the load-

deformation curves for the nails were also created for Group A as shown in Graph 9.  

These curves were derived from the calculated differential displacement between the  

Backbone 
Curve 
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Table 12:  Summary of Wall Ultimate Unit Shear Capacity 

 

 A B C D E SDPWS Report 154 
Wall 

Restraint 4416 1104 2208 3312 0 5024 6288 

Ultimate Capacity, plf 

1 569 314 502 607 190     
2 538 337 500 656 181     
3 562 323 474 594 158     
4 549 372 516 590 142     
5 558 377 489 628 137     

Avg. 555 345 496 615 162 628 786 
Std. Dev. 12 29 16 27 23     

COV 0.022 0.083 0.032 0.044 0.145     
Min. 538 314 474 590 137     
Max. 569 377 516 656 190     

Normalized 

Phold down 0.702 0.176 0.351 0.527 0.000   1 

Vcap(%) 0.706 0.438 0.631 0.782 0.206   1 

 

Graph 8:  Summary of Wall Tests 
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Graph 9: 8d Common Nail Curves from Wall Group A 

Nail Load Deformation Curves
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OSB sheathing and the studs from the test results.  The load was calculated by dividing 

the force in the stud or plate by the effective number of nails along that member.  The 

effective number of nails considered only a portion of the corner nails, assuming that 

they were directed to the center of the wall.  This is reasonable since the nails are 

loaded primarily in one direction in a shear wall restrained with a hold down.  “The wall 

specimen, as a whole, will experience the ‘average’ nail behavior.” wrote Dolan and 

Madsen 1992.  The curves were created for both the nails in the bottom plate as well as 

the nails in the tension or compression end stud, depending upon which stud 

experienced nail failure. The dominant failure of the walls was nail failure along the 
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tension stud, with one specimen failing along the compression stud.  Therefore, the 

vertical nail curve was used to determine the average nail stiffness. 

The vertical nail curves were separated and a curve was fit to describe the 

nonlinear behavior of the fasteners.  For comparison, an additional curve is shown as 

Dolan.  This curve uses Eq. 8 along with the following parameters: 

K1 = 4870.0 lb/in 
P0 = 180.0 lb 
K2 = 240.0 lb/in 
Dmax = 0.5 
K3 = -240.0 lb/in 

These parameters are from Table 1 of Dolan and Foschi 1991, except K3 which is from 

Judd 2005, for 8d Common nails with 3/8” plywood and SPF studs.  It is recognized that 

Judd chose to use K3 = -K2, which is taken from Table 3 of Dolan and Madsen 1992. 

Graph 10:  8d Common Nail Curve Model 
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As shown in Graph 10, the curve fit from the Wall A test is very close to Dolan’s 

model.  The largest difference is in the change from the peak load to the softening 

branch.  Rather than a sharp peak, the nails exhibited a gentler transition to the 
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softening branch.  The softening branch of the fit curve is slightly above the average 

data.  This matches wall A6, which had the longest softening branch. 

The peak nail values for each of the five walls from Group A are tabulated in 

Table 13.  The stud designation, Axx.1 refers to wall type A, test ‘xx’, and stud 1, the 

tension stud.  Stud 4 is the compression stud.  Table 13 also includes the specific 

gravity, G, (see section A6 in APPENDIX A) the thickness of the sheathing, ts, the 

thickness of the stud, tm, and the NDS yield limit capacity, Pcalculated.  The NDS yield limit 

capacity was calculated as the minimum of Eq. 4, Eq. 5 and Eq. 6 for modes Im, Is, II, 

IIIm, IIIs and IV.  Mode IIIs governed in all cases. 

The peak nail capacity from the test results are very close to the NDS yield limit 

values.  The difference is only 8.3%.  If the NDS yield limit nail capacity is modified by 

the diaphragm factor, Cdi, the difference is only 3.9%.  In Table 13, Cdi was taken as the 

ratio of the average Ptest/Pcalculated, or 1.09, compared with 1.10 as specified in the NDS. 

Table 13:  Nail Values from Wall Group A 

Stud Gs Gm ts tm Pcalculated Ptest Difference % Difference Difference % Difference

A5.1 0.60 0.45 0.533 3.5 254 258 3 1.3% 19 7.2%

A4.1 0.62 0.38 0.515 3.5 248 260 12 4.7% 10 3.8%

A3.1 0.57 0.35 0.534 3.5 238 260 22 9.4% 2 0.7%

A2.1 0.50 0.34 0.529 3.5 218 252 34 15.6% 15 6.0%

A1.1 0.56 0.33 0.523 3.5 230

A5.4 0.60 0.38 0.533 3.5 248

A4.4 0.62 0.35 0.515 3.5 245

A3.4 0.57 0.40 0.534 3.5 242

A2.4 0.50 0.32 0.529 3.5 216
A1.4 0.56 0.40 0.523 3.5 237 262 25 10.4% 4 1.6%

Average 238 258 8.3% 3.9%

With CdiFailure Stud

 

The load deflection behavior and stiffness of the hold downs were determined 

from tests by use of a load cell at the hold down and string potentiometer measuring 

displacement of the tension stud.  This data is shown in Graph 11, demonstrating the 
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slip that occurs before the linear behavior of the hold down is achieved.  Note that walls 

A1 through A4 utilized a Simpson HDU14 while wall A5 utilized a Simpson HDU8.  

While the stiffness of the HDU14 is consistent, the slip varies.  Unexpectedly, the HDU8 

was stiffer than the HDU14. 

Holdown Stiffness

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Displacement, inches

L
o

a
d

, 
lb

Wall A1

Walll A2

Wall A3

Wall A4

Wall A5

 

Graph 11:  Hold down Stiffness from Test Results 

3.3.2 Discussion of Wall Failures 

Nearly all of the walls failed as expected.  The failure mode of four of the test 

specimens, walls A2, A3, A4, and A5 in wall Group A, was nail failure along the tension 

stud.  The failure mode of one wall from wall Group A, wall A1, was nail failure along the 

compression stud. 

The nails typically failed in mode IIIs with some in mode IV, Figure 8.  The IIIs 

mode failure is a single yielding of the nail along with rotation of the nail in the 
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sheathing.  Mode IV is a double yielding of the nail.  Mode IV was observed only a few 

times. 

 The hold down didn’t fail, but did elongate more than expected.  Wall A5 was the 

first wall tested and, as noted earlier, the hold down on this wall was installed tight to the 

bottom plate.  As the hold down elongated, the inner tip of the hold down was tight to 

the bottom plate.  The bottom plate then began to separate from the tension stud as the 

load increased.  Believing that prying action occurred on this test, the hold down was 

installed 1” above the bottom plate on subsequent tests on the remaining walls in Group 

A to eliminate prying action.  These walls behaved similarly at the hold down in that the 

hold down elongated and the bottom plate began to separate from the tension stud.  

Photo 1 shows the separation of the stud and bottom plate on wall A5.  This photo was 

taken after failure so the separation 

closed.  Note the location of the bottom of 

the sheathing in Photo 1 as well.  The 

nails located in the tension stud on this 

wall all failed and the stud was completely 

free from the sheathing after failure.  The 

top plate also separated from the tension 

stud on wall A1. 

For wall Groups B, C, D, & E, failure typically initiated at the corner nail in the 

bottom plate on the tension side.  Since the anchor bolt 12” from the end was the only 

mechanical hold down, the bottom plate bent upward at the tension end of the wall as a 

cantilever beam from the anchor bolt.   

 

Photo 1:  Stud/Plate Separation at 
Hold Down 
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3.3.3 Partial Restraint Effect 

The test results shown in Table 12 are plotted in Graph 12.  This graph shows 

the relationship of the restraining force and the ultimate unit shear capacity of the shear 

wall.  Both a linear and second order curve was fit to the data.  The second order fit is 

obviously the best with R2=1.   The line representing the SDPWS nominal value is only 

shown as a point of reference and is not intended to indicate that it is constant for all 

values of the restraining force.  SDPWS requires a restraining force proportionate to the 

height of the wall and the nominal unit shear capacity. 

Note that the curve shown in Graph 12 is a different shape than as presented in 

Graph 2 from previous research (Ni and Karacabeyli 2000).  There are two reasons for 

this difference.  First, the previous research considered a sole plate restrained by ½” 

diameter anchor bolts at 16” o.c. with the first bolt 8” from the end.  This provides much 

greater restraint than the Group A unrestrained walls presented here.  Second, the 

curve in the previous research was fit to the nominal unit shear capacity and not the 

ultimate unit shear capacity.  The latter is required to understand the true relationship of 

the partial restraint. 

Graph 12 and Table 12 also show that a mechanical hold down does not provide 

the same restraining effect as a restraint at the top of the wall above the tension side of 

the wall.  In fact, the mechanical hold down can only generate 70.6% of the fully 

restrained ultimate unit shear capacity. 

The second order equation shown in Graph 12 is the partial restraint factor for 

the ultimate unit shear capacity, Cpr-u.  This equation is shown below as Eq. 13.  The  
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y = 0.7735x + 0.2939
R² = 0.9378

y = -0.6393x2 + 1.4331x + 0.206
R² = 1
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Graph 12:  Partial Restraint Effect on Strength 

ultimate unit shear capacity of a partially restrained wall can now be determined from 

Eq. 14: 

Cpr-u = -0.6393λ2+1.4331λ+0.206 ≤ 1.0 
 
and 
 
Cpr-u = 0.706 for a mechanical hold down 

Eq. 13 

Where, 

height  wallshearh

capacity shear unit ultimateV

force grestraininP

hV

P

ult

D

ult

D

=

=

=

×
=λ

 
 

Vpr=Cpr-uVult Eq. 14 
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3.3.4 Probability Distribution of Unit Shear Capacity 

To determine the likely probability distribution of the ultimate unit shear capacity 

from the test data, distribution paper was used.  The two possible distributions 

considered were normal and log-normal.  This was done for Groups A-E.  For 

consideration of normal distribution for wall Group A, the distribution calculations are 

shown in Table 14. The probabilities from Table 14 are plotted against the wall capacity 

on normal probability paper in Graph 13. 

Table 14:  Wall Group A Normal Distribution Probability  

 

m 1 2 3 4 5 

V, plf 538 549 558 562 569 
m/(n+1) 0.167 0.333 0.500 0.667 0.833 

 

0.01

0.10

0.50

0.90

0.99

y = 0.0615x - 34.138
R² = 0.9757

535 540 545 550 555 560 565 570

C
u

m
u

la
ti

v
e

 P
ro

b
a
b

il
it

y

Unit Shear Capacity, plf

Test Data

Linear Fit

 

Graph 13:  Unit Shear Capacity of Wall A on Normal Probability Paper 
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For consideration of log-normal distribution for wall Group A, the distribution calculations 

shown in Table 14 are plotted against the wall capacity on log-normal probability paper 

in Graph 14. 

0.01

0.10

0.50

0.90

0.99

520 540 560 580 600

y = 0.0615x - 34.138
R² = 0.9757

500

C
u

m
u

la
ti

v
e
 P

ro
b

a
b

il
it

y

Unit Shear Capacity, plf

Test Data

Linear Fit

 

Graph 14:  Unit Shear Capacity of Wall A on Log-Normal Probability Paper 

 While both graphs indicate a close fit and very similar result (equation of the line 

is the same for both and R2 is the same for both), log-normal distribution will be used.  

Log-normal distribution does not allow negative values, so it is preferred over normal 

distribution.  The remaining walls resulted in similar conclusions. 

 The Chi-square test is another method for determining the best matching 

distribution.  However, a Chi-square test should have a minimum of 25-30 samples and 

at least five bins (Ang & Tang 1975).  Since the sample size is only five, it is not feasible 

to use the Chi-square test for this data. 

 Similarly, another goodness-of-fit test is the Kolmogorov-Smirnov test for 

distribution.  With having only five samples, the results of this test are the same for 
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normal and log-normal distribution at the 5% significance level.  Thus no conclusions 

can be made from the K-S test. 

3.3.5 Probability Distribution of Specific Gravity 

Samples of each member were taken from the test specimens and specific 

gravity tests were conducted for each piece in accordance with ASTM 2395.  The 

results of the test are shown in section A6 in APPENDIX A and summarized in Table 

15.   

Two distributions for specific gravity were considered, normal and log-normal.  

The two distributions were compared with a Chi-Squared Test.  Although both were 

valid distributions, log-normal was selected because it always yields a positive value. 

 

Table 15:  Summary of Specific Gravity Tests 

Member Studs Plates Sheathing 

Description 2x4 Stud Grade 
SPF-S 

No. 2 Grade 
SPF-N 

15/32” OSB 

 

Number of 
Pieces Tested 

100 75 25 

  Exp. Ref. Exp. Ref. Exp. Ref. 

Average, G 0.36 0.361 0.40 0.421 0.58 0.503 
Std. Dev. 0.03 0.0362 0.03 0.0422 0.03  Specific Gravity 

Prob. Dist Log-normal Log-normal Log-normal 

Average, MC 15.1% 16.2% 4.7%  Moisture 
Content Std. Dev. 1.5% 

 

2.1% 

 

0.4%  

Average, t (in)   0.511  
Thickness 

Std. Dev.  

 

 

 

0.017  
Exp. = Experimental Value; Ref. = Reference Value 
1
 NDS (2005) 

2
 ASTM D2555 – 06 

3
 PDS (2004) 
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3.3.6 Wall Restrained with Hold Down 

The ultimate unit shear strengths were calculated using the APA Research 

Report 154 (2004) tabulated average ultimate value along with the modification required 

for specific gravity, as shown in footnote C of Table 6, using the weighted average of 

the specific gravity of the actual materials.  The calculated results were compared with 

the test values for Group A walls and are tabulated in Table 16 and shown in Graph 15.   

The results were good with an average percent error of 0.07% between the 

average experimental values and the average calculated values.  As seen in both Table 

16 and Graph 15, walls A3, A4, and A5 were the most consistent to their respective 

anticipated values with an average percent error of -0.6%.  Walls A1 and A2 are the 

outlying values producing percent errors of 5.1% and 2.8% respectively.  

Graph 15 illustrates the correlation between the wall unit shear capacity and the 

average specific gravity of the wall framing members.  The test results are compared 

against the expected values calculated from the APA Research Report 154 (2004) 

tabulated average ultimate value along with the modification required for a specific 

gravity.  The bandwidth shown is ±σ, or one standard deviation, of the experimental wall 

capacity. All but wall A1 lie within the bandwidth. 

Although a linear regression of the results from walls A1 to A5 do not correspond 

to the expected relationship of the wall unit shear strength to the specific gravity, G, the 

data fits relatively well within the bandwidth.  This result can be expected with a small 

sample size. 
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Table 16:  Effectiveness of Hold Down 

 

Wall

A1 0.344 569 771 0.702 541 5.1%
A2 0.363 538 788 0.702 553 -2.8%

A3 0.379 562 802 0.702 564 -0.3%
A4 0.364 549 789 0.702 554 -0.9%
A5 0.377 558 800 0.702 562 -0.7%

Average 0.373 556 797 0.702 560 -0.6%
Std. Dev. 6.7

Average 0.365 555 790 0.702 555 0.07%
Std. Dev. 0.0137 12.0 8.8

Walls A1, A2, A3, A4, and A5

% Error

Gave 

Plates and 

Studs

Holdown 

Reduction

APA 

Report 
154 

Capacity
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Report 

154 

Adjusted 
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 Experimental 
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Graph 15:  Correlation of Wall Strength to Specific Gravity 
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Figure 12:  Test Assembly Wall A 
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Figure 13:  Test Assembly Walls B, C and D 
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Figure 14:  Test Assembly Wall E
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CHAPTER 4 

FINITE ELEMENT MODELING 

A finite element model was created to offer a better understanding of the 

behavior of the walls with varying restraint conditions.  The model includes a nonlinear 

finite element analysis.  The load deformation curves are compared to the test results 

for accuracy of the model. 

4.1 Finite Element Model 

The finite element model (FEM) was constructed in HYPERMESH and analyzed 

in ABAQUS, a commercial finite element solver.  The model was constructed to 

replicate as much detail as possible of the walls tested.  The model used: 

• Beam elements for the framing members 
• Four node quadrilateral shell elements 
• Two orthogonal springs connecting framing members, one linear and one 

nonlinear 
• Two uncoupled orthogonal nonlinear springs (or spring pair) connecting 

the sheathing to the framing elements 
• Compression-only beam elements at the supports that cannot resist 

tension 
• And a nonlinear spring for the hold down. 

 
Initially, the model was constructed with a single 1D nonlinear spring element 

that was free to rotate (a SpringA element in ABAQUS).  However, this element created 

difficulties solving.  It was extremely difficult to obtain convergence in the early steps of 

the analysis.  ABAQUS had difficulty in these early steps as the springs rotated to their 

initial displacement path.  The uncoupled nonlinear spring pair overcame this difficulty 

and created a model that was easier to converge during the initial steps. 
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The uncoupled nonlinear spring pair is a common model that is commonly found 

in other literature (Cassidy 2002, Dolan and Foschi 1991, and Folz and Filiatrault 2001).  

As stated in Chapter 2, the uncoupled nonlinear spring pair is sufficient for determining 

the ultimate load and displacement for monotonic loading. 

4.1.1 Elements 

 

Figure 15:  Finite Element Model 

The FEM model is shown in Figure 15.  A description of the actual elements used 

in the ABAQUS software model follows.  For more information regarding these 

elements, please refer to the “ABAQUS Analysis User’s Manual” (ABAQUS 2010). 

Nail element, 6:12 
spacing. 

V

P

2x2 shell element 
for sheathing, typ. 

Compression only 
support beam 
element with 
pinned support, 
type. 

Beam elements 
for studs 
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4.1.1.1 Framing Members 

The framing members, studs and plates were modeled as type B31 two node 

three-dimensional beam elements.  This element uses linear interpolation.  B31 

elements have six degrees of freedom at each end.  These elements can be defined by 

different geometric shapes.  For this model, a rectangular shape was used to model a 

2x4 framing member. 

The second top plate of the wall was fastened only to the first top plate of the 

wall.  This was deemed insignificant to the strength and stiffness of the wall since it was 

not fastened to the sheathing.  It is common for models in the literature (Cassidy 2002, 

Judd 2005) to use both plates as one member of equal dimension.  This would create 

additional stiffness that does not exist for the walls tested in this research. 

Material properties for the B31 element are defined in the material properties 

card. The material properties used are explained in the Materials section of this chapter. 

The length of the elements for the studs was 6” and the length of the elements 

for the sole and top plate was 2”.  These lengths worked well for the nail and framing 

geometry and for the behavior of the wall as well. 

4.1.1.2 Nails 

The framing members were connected with two orthogonal springs (or spring 

pair), one linear and one nonlinear, as shown in Figure 16.  As noted earlier, these 

springs are each one dimensional spring elements.  These springs are modeled as 

Spring2 elements in ABAQUS.  The spring used for lateral movement, or shear, was a 

linear spring while the spring used for end grain withdrawal was a nonlinear spring. 
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The sheathing was connected to the framing 

members with two orthogonal springs (or spring pair) as 

shown in Figure 16.  As with the framing members these 

were one dimensional spring elements modeled as 

Spring2 elements in ABAQUS. This spring pair contains 

uncoupled, nonlinear springs with equivalent properties. 

As shown in Figure 16, the spring pair allows the 

node to move from point 1 to point 1′.  This allows a two dimensional movement of the 

node replicating the nail displacement.  As explained in Section 2.9.1, the spring pair 

model provides correct results for peak load and displacement for monotonic loading.  

The spring properties for these elements are explained later in Section 4.2. 

4.1.1.3 Sheathing Members 

The sheathing was modeled as four node quadrilateral shell elements.  The 

general purpose S4 element was used.  This element has six degrees of freedom at 

each node.  The element size was 2” x 2” for ease of geometric construction.  An 

element size of 4” x 4” is acceptable to model the sheathing.  Cassidy modeled 16”, 8”, 

4” and 2” elements and found convergence with 4” elements.  He also used 2” elements 

to simplify the geometry for other nail patterns. (Cassidy 2002) 

4.1.2 Materials 

The material properties for the FEM were taken from available literature as well 

as from data obtained from the test.  The stud and plate properties were taken from the 

NDS (2005) and the Wood Handbook (1999).  Sheathing properties were taken from the 

1 

1′ 

Figure 16: Spring Pair 
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Plywood Design Specification (2004).  Sheathing nail data and hold down data was 

obtained from the test results for the Group A walls.  Stud to framing nail data was taken 

from the literature (Cassidy 2002). 

Although wood is an orthotropic material, it is typically modeled as an isotropic 

material for wood shear walls (Judd 2005, Cassidy 2002).  For the elements used, the 

modulus of elasticity and Poisson’s ratio were required.  The following values were used 

for the analysis: 

Table 17:  Framing Material 

Material 
Sizea 
(in) 

MOEa 
(psi) 

Poisson’s Ratiob 
υ 

Studs – SPF-S 1.5 x 3.5 1 x106 0.3 

Plates – SPF-N 1.5 x 3.5 1.4 x 106 0.3 
a From the NDS (2005) 
b Estimated from orthotropic properties (Wood Handbook 1999) 

  

For compression only support members, the material properties for the studs 

were used, but without tension.  ABAQUS allows a “no tension” command to be added 

to a material property.  This command does not allow tension stresses to occur in that 

material.  Convergence of the model using this method worked better than using springs 

to model these supports. 

The OSB sheathing material properties were taken from the Plywood Design 

Specification (2004).  The following values were used for the analysis: 
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Table 18:  Sheathing Material 

Material 
Thicknessa 

(in) 
MOEa 

(psi) 
Shear Modulusa 

(psi) 
Poisson’s Ratiob 

υ 
15/32” OSB 0.469 0.738 x106 0.178 x106 0.3 
a From the PDS (2004) 
b From literature (Judd 2005) 

 

4.2 Connections 

The properties for the sheathing nail spring pairs are the one dimensional spring 

element spring constants or the nonlinear load deformation nail curve data.  The 

nonlinear load deformation nail curve data was taken from the test results as explained 

earlier in Section 3.3.1.  The data was reciprocated in the negative region from the 

positive data to provide the same stiffness in the event that the spring moved in the 

negative direction.  The same nail data was used for both orthogonal springs in the 

spring pair. 

The nail data from the test results, shown in Graph 10, were calibrated in the 

model so the model behaved similarly to the test results for all five wall types. The 

values used in the FEM are tabulated in Table 19 and they are also shown in Graph 16.  

For comparison, the nail data from the test results of wall A are also shown in Graph 16. 

In order to help with convergence, the stiffness at zero displacement is 5 lb.  This 

was chosen as a small value so the spring doesn’t have zero force at the beginning of 

the analysis. 

The properties for the stud to plate nail elements were also spring constants, or 

the load deformation curve data.  This connection also consists of two orthogonal 

springs.  The stiffness of the springs for this connection is not the same in both  
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Table 19:  Sheathing Nail Data 

Displacement 
(in) 

Load 
(lb) 

-1.500 -37 

-1.000 -148 

-0.720 -213 
-0.540 -250 

-0.369 -240 

-0.180 -200 
-0.042 -100 

0.000 5 

0.042 100 
0.180 200 

0.369 240 

0.540 250 
0.720 213 

1.0 148 

1.5 37 

Nail Load Deformation Model

-300

-200

-100

0

100

200

300

-2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00
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lb
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Graph 16:  Sheathing Nail Data for ABAQUS 
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directions. The two directions considered are perpendicular to the stud in the plane of 

the wall and parallel to the stud in the plane of the wall.  The latter is a withdrawal load 

from the end grain of the stud.  For the direction perpendicular to the stud, a linear 

spring stiffness of 12,000 lb/in was used, which was used by Cassidy (2002) and 

published by Dolan et. al. (1995).    For the direction parallel to grain, a nonlinear spring 

stiffness was used.  The nonlinear spring stiffness was modified from the values used 

by Cassidy (2002).  The modification was made on the tension value due to 

observations made during testing and dismantling the walls.  It was observed that nail 

withdrawal from the end grain of the stud was not linear.  The connection remained 

intact and then abruptly withdrew.  The exact magnitude of this response is not known.  

A parametric study was conducted with the FE model until the load deformation curve 

reasonably met the test results.  Recall that Cassidy (2002) used an arbitrary tension 

stiffness of 100 lb/in.  As noted above, the compression stiffness was not altered and a 

value of 41,000 lb/in was used as modeled by Cassidy (2002).  The values used in the 

FEM are tabulated in Table 20 and they are also shown in Graph 17. 

Table 20:  Stud to Plate Vertical Nail Data 

Displacement 
(in) 

Load 
(lb) 

-1.0 -41,000 

0.0 5 

0.094 200 
3.0 450 

 

In order to obtain convergence of the model, the spring pairs for the framing 

member connections were used for the two studs closest to the leading edge only 

(where tension will result).  The other two studs were simply connected to the plate 
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Graph 17:  16d Stud Withdrawal Nail Data for ABAQUS 

nodes.  It was discovered that this is a good modeling technique to capture the behavior 

of the framing connections. 

It was recognized that the connection of the stud to the plate is neither an ideal 

pinned connection nor a rigid connection.  This joint is in fact a semi-rigid joint.  When 

the stud is in tension and the framing nails are withdrawing from the end grain of the 

stud, the rotational stiffness of the joint is only the stiffness of the two 16d nails.  

However, when there is a compression force in the stud, rigidity is created at the joint. 

To illustrate the rigidity of the joint due to compression in the stud, a finite 

element model was created, Figure 17, to observe the behavior of the joint.  The model 

consisted of a 2x4 member 6” tall.  Since the base is supported on the sole or top plate, 

compression only springs were used with the same stiffness as the compression 

bearing shown in Table 20.  RAM Elements was used for the FEA.  
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Figure 17:  FEM of Stud Connection 

From statics it is known that the eccentricity of a load, see Figure 17, cannot 

exceed b/2 or ¾”.  Therefore, it is possible to develop a moment equal to 

P1 x ¾” at the ends of the compression studs.  The results of this model are shown in 

Graph 18.  Note the rotational stiffness is a constant 13,850 in-lb/radian in the linear 

range and the linear range is extended to a greater rotation as the axial force increases. 

5 @ P1/6 

P1/12 P1/12 

K=41,000 lb/in 
for entire stud 

P1=Axial Force 

P2=Lateral Force 

P2 

1½” 
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Moment vs. Rotation
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Graph 18:  Effect of Axial Load on Stud Connection Rigidity 

Figure 18 shows some of the results from the FEM with the 3,000 lb axial load 

and a 100 lb lateral load.  Figure 18 (a) shows the reactions, (b) shows the deformed 

shape and (c) shows the axial stress. 

 
 

(a) 

 
 

(b) 

 
 

(c) 

Figure 18:  FEM Results of Stud Connection Rigidity 
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The model developed for this thesis models the semi-rigid connections by using 

one half of the connections as rigid and the other half pinned.  As noted earlier, 

specifically the connections on the two studs at the leading edge of the wall were hinged 

in anticipation of the resulting tension in these studs.  This, combined with the spring 

pair framing connection, allowed separation of the studs from the plates at these 

locations as observed in the test specimens. 

The hold down was modeled as a nonlinear spring to account for the slip in the 

connection.  It is recognized by the manufacturer and in SDPWS (2005) that there is slip 

in a hold down.  This was observed and recorded during the tests.  The nonlinear spring 

data used in the FEM was taken from the test data. The values used in the FEM are 

tabulated in Table 21 and they are also shown in Graph 19.  This data creates a slip of 

0.114” and then provides a tension stiffness of 39,562 lb/in. 

Table 21:  Hold Down Stiffness Data 

Displacement 
(in) 

Load 
(lb) 

0.0 5 

0.114 200 

1.0 35,063 
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Graph 19:  Hold Down Stiffness for ABAQUS 

4.3 Modeling 

The FEM used displacement control in the load steps.  Nonlinear geometry 

control was used with the solver.  The solver also used the Newton-Raphson method for 

calculating the stiffness matrix.  The ABAQUS line search control parameter was used 

to help with convergence using the Newton-Raphson method. 

The analysis utilized time steps to solve the model. The use of nonlinear 

geometry required that a time step analysis was used.  For convergence, the solver 

automatically chose the step increment.  An initial suggested step increment of 1/1000 

was used with a maximum of 1/50.  The solver was set to use smaller increments if 

necessary.  To further aid the convergence, a discontinuous analysis control was used.  

This allows an increased number of iterations before divergence is checked.  While this 

can increase computational time, it was often necessary for convergence. 
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In addition to the constraining force, P, as shown in Figure 15, the dead load of 

the wall was included in the analysis.  This was applied as four 25 lb loads at the top of 

the wall to account for the weight of the sheathing and framing members. 

4.4 Finite Element Analysis Results 

The model utilized the same boundary conditions and restraining force as the five 

different sets tested, as well as one additional model with full constraint.  The uplift 

boundary constraints and restraining forces are summarized in Table 22.  The additional 

model with full constraint consisted of supports at 8” on center, along the top and 

bottom.  The supports along the top were connected to a rigid beam that was 

constrained in both the vertical and out-of-plane directions.  The supports directly above 

and below the studs, as well as between the studs along the top plate, were no tension 

elements.  The supports between the studs along the bottom could resist tension.  The 

latter model is for illustration of a fully restrained wall.  The results of all of the FE 

models are shown on the following graphs and are each plotted along with the 

corresponding test results. 

Table 22:  Summary of FE Model Constraints 

Wall A B C D E 
Full 

Constraint 

Restraining 
Force, P (lb) 

None 1104 2208 3312 None None1 

Mechanical 
Hold Down 

Y2 N3 N3 N3 N3 N4 

1
Rigid beam across top of wall preventing any uplift. 

2
Simulated mechanical hold down as used in actual tests. 

3
Simulated 

5
/8” diameter bolt 12” from tension edge. 

4
Simulated 

5
/8” diameter bolt at 8”, 24”, and 40” from tension edge. 
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Graph 20:  FE Comparison for Wall A 
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Graph 21:  FE Comparison for Wall B 
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Graph 22:  FE Comparison for Wall C 
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Graph 23:  FE Comparison for Wall D 
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Graph 24:  FE Comparison for Wall E 
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Graph 25:  FE Model of Fully Restrained wall Compared to FE Model of Walls A-E 
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The results of the FE model are good in comparison to the test values for all five 

wall sets.  Graph 25 shows the result of the fully constrained FE model compared to the 

results of the other five FE models.  This graph also compares well with the summary of 

the actual test results shown in Graph 8. 

The results are further summarized in Table 23 and Graph 26.  It is apparent that 

wall A (with the mechanical hold down) has the least variability.  The data from APA 

Research Report 154 has the greatest variability.  For all of the comparisons, the FE 

model results fit well between the minimum and maximum values.  Wall E and the APA 

Research Report 154 comparison have the largest percent error.  However, the average 

of the errors is only -2.5%.  If the comparison includes only the tested walls, the average 

percent error is -0.3%.  This makes sense recognizing that wall E has the greatest 

variability of the walls tested.  APA Research Report 154 doesn’t offer an explanation 

for the large variation in the published values. 

Table 23:  Comparison of FE Model to Test Results 

 Test Results   

 Wall A Wall B Wall C Wall D Wall E APA 1541  

Average 555 345 496 615 162 785  

Min 538 314 474 590 137 593  

Max 562 377 516 656 190 888  
        

 ABAQUS Results  

ABAQUS 569 322 449 571 193 678  

       Average 
% Error 2.5 -6.6 -9.5 -7.2 19.4 -13.7 -2.5 

 
1
Values in APA 154 modified to a specific gravity of 0.36.  

 



www.manaraa.com

 

 

92 

FE Comparison to Test Data

0

100

200

300

400

500

600

700

800

900

1000

Wall A Wall B Wall C Wall D Wall E APA 154

Wall Type

L
o

a
d

, 
p

lf

Min

Average

Abaqus

Max

 

Graph 26:  Comparison of FE Model to Test Results 

Walls B, C and D have a negative movement initially due to the application of the 

restraining force P.  This was observed in the test walls as well.  There is a P-∆ effect 

that occurs when the restraining force, P, is applied since it is eccentric to the centroid 

of the wall.  There is also a prestess that occurs with an added restraining force, P.  The 

prestress, along with the added clamping action that keeps the plates from separating 

from the studs, increases the unit shear capacity of the wall. 

The partial restraint effect of a single anchor bolt 12” from the end of the wall is 

best observed by viewing the sole plate as the wall is loaded.  Figure 19 shows the 
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deformation of the sole plate as well as the sheathing and the nails at the base of wall E 

as it is loaded.  Horizontal dashed lines are added to these figures as a reference to 

observe the deformation of the sole plate.  The arrows pointing upward indicate 

compression only supports while the downward arrow represents the anchor bolt 

capable of resisting tension. 

The view shown in (i) is at the early stages of the pushover analysis.  As the load 

progresses, the tip of the sole plate continues to lift off the support.  Between stages (iii) 

and (iv) the end stud separates from the sole plate, the sole plate to the end stud nails 

withdraw, and the corner nail must then resist more load.  The peak load occurs when  

 

  

(i)  

   

(ii)  

 

(iii)  

 

(iv)  

 

(v)  

 

(vi)  

Figure 19:  Sole Plate Deformation of Wall E 
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Graph 27:  Contour Plot of Corner Nail Vertical Force, Wall E 

the first three nails reach their peak capacity and the fourth nail is near its peak 

capacity.  Graph 27 illustrates this clearly. It also shows that maximum force occurs first 

in the nail closest to the anchor bolt.  The two neighboring nails then resist more load 

until they too yield and eventually all three reach their peak capacity.  Note also in 

Figure 19 that the sheathing nails are nearly all vertical. This behavior was observed in 

the tests as well.  This behavior can also be observed in the SBCRI 12’ x 30’ test 

structure shown in Figure 10. 

The sole plate deformation and corner sheathing nail failure in the FE model is 

the same for walls B, C and D as shown for wall E in Figure 19.  It just occurs at a 

greater unit shear load due to the restraining force. 

Wall A exhibits a different failure mode due to the mechanical hold down.  The 

deformation of the overall wall is shown in Figure 20.  The top plate separates from the 

tension stud and then the sheathing nails in the tension stud reach their peak loads 

when the wall reaches its peak capacity.  The same reference line and support locations 

are shown along the sole plate.  The hold down kept the tension stud near the sole 

plate, but did allow some separation.  There is some uplift of the sole plate at this  
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Figure 20:  Deformation of Wall A FE Model 

point due to slip and elongation of the hold down.  This behavior was observed in the 

tests as well. 

The fully restrained FE model illustrates the behavior of the wall when the plates 

are not allowed to separate from the studs.  This can occur if a test apparatus utilizes a 

stiff load beam bolted to the top, if anchor bolts are used in each stud space, and if hold 

down rods are used to anchor the load beam to the foundation as illustrated in ASTM 

E72, Figure 22. 

Separation 
of top plate 

from end 
stud 

Hold down 
restraining 

corner of 
wall 

Enlargement of hold 
down response 
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For the fully restrained FE model, 

the peak load was reached when the 

peak capacity of the nails in the 

compression stud was reached.  The 

deformation of the studs can be seen in 

Figure 21.  At peak load the studs 

transferred 869 lb of shear at the top 

plate and 894 lb of shear at the sole 

plate.  This is an average force of 220 lb 

per stud connection or 220 plf of 

additional unit shear capacity beyond 

the sheathing edge nail contribution.  

This can add a significant increase to the wall unit shear capacity when the wall is fully 

restrained.  This also explains the difference in the nail load deformation curves shown 

in Graph 9. 

The contributing effect of the wall studs to the unit shear capacity was also 

observed in the other wall models, but to a lesser degree. The full benefit of the stud 

resistance cannot be achieved without a full constraint condition or other mechanical 

means of keeping the studs from separating from the plates. 

The sheathing is not shown in Figure 21 for clarity to show the framing 

deformation.  The rigid beam along the top of the wall is also shown in Figure 21. 

Figure 21:  Deformation of Fully Restrained 
FE Model Frame 
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CHAPTER 5 

RELIABILITY ANALYSIS 

The calibration using a reliability analysis was conducted in stages to fully 

understand the effect of each random variable and load combinations.  It was necessary 

to first determine the reliability of the current industry standard, SDPWS, so a target 

reliability index could be used to determine the correct bias factors to produce the 

proper nominal values.  The end result is verification of the nominal unit shear value 

used in SDPWS along with modifications for specific gravity, and proposed modification 

factors for the restraint type and partial restraining force; all of which are calibrated to 

the target reliability index. 

At the two extremes of a partially restrained shear wall are unrestrained and fully 

restrained.  The unrestrained shear wall is not restrained by any special mechanical 

hold down device or restraining force.  The unrestrained shear wall is only restrained by 

the ½” diameter anchor bolt 12” from the end as required by the IRC.  The fully 

restrained shear wall is restrained completely by an applied restraining force at the top 

of the wall.  This load is so large that it produces a righting moment such that the 

overturning force will never overcome it.  The failure modes of these two shear wall 

conditions have nothing to do with the variability of the restraining force and thus are 

only dependent upon their unit shear strength and the specific gravity of the lumber. 

 The load combinations of ASCE 7 and the IBC will have an effect on the 

partially restrained conditions between the two extremes explained in the preceding 
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paragraph.  The calibration stage process presented will clearly illustrate the effect of 

these load combinations. 

5.1 Code Required Load Combinations 

Both ASCE 7-05 and IBC 2009 provide requirements for load combinations that a 

structure must meet.  SDPWS provides the required ASD safety factor and LRFD 

resistance factor, (section 2.6).  The governing load combinations for wood shear walls 

with wind load, the corresponding ASD safety factor and LRFD resistance factor are 

summarized in Table 24. 

Table 24:  Load Combinations 

 

ASD LRFD 

Load Combination Safety Factor, Ω1 Load Combination Resistance Factor, φ1 
D+W 2.0 1.2D+1.6W 0.8 

0.6D+W 2.0 0.9D+1.6W 0.8 
1
 From SDPWS 

D=Dead Load 
W=Wind Load 

5.2 Reliability of SDPWS Nominal Unit Shear Capacities 

It is necessary to understand the reliability of the current unit shear capacities in 

order to calibrate the partially restrained shear wall unit shear capacities.  To 

accomplish this, the origination of the SDPWS values was researched.  The values in 

SDPWS originate from APA Research Report 154. 

The test results, shown in Table 12, indicate that a mechanical hold down device 

at the bottom tension corner is not sufficient to achieve the fully restrained shear wall 

capacity.  Therefore, to determine the capacity of a fully restrained shear wall, the 

values published in APA Report 154 were used and are indicated here for the 15/32” 
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WSP as used for the test samples.  The nominal design unit shear capacity for 15/32” 

WSP are based on the results of seven tests, Table 25.  The seven test results are a 

combination of three tests using 19/32” plywood and four tests using 5/8” plywood.  The 

panel thickness has little influence on the ultimate capacity of the shear wall (van de 

Lindt and Rosowsky 2005).  Therefore, it is reasonable to use the test results shown in 

Table 26 as the ultimate unit shear capacity for 15/32” WSP.  

Table 25:  Excerpt from APA Report 154, Table A1 

 

Fastener Ultimate Loads (plf) 

Size 
Spacing 

(in) 

Panel 
Thickness(a) 

(in) 

No. of 
Tests Min. Max. Avg. 

Target 
Design 
Shear 

Load 
Factor(b) 

RATED SHEATHING 
8d 6 15/32 7 689 1033 913 260 3.5 

(a) Minimum panel thickness for design shear, some walls sheathed with thicker panels. 
(b) The load factor is determined by dividing the average ultimate load by the target design shear. 

A summary of the reported test results shown in Table 25 and Table 26 are 

shown in Table 27. Since all four tests are not reported for the 5/8” WSP, the two missing 

values were estimated with equal weight.   

Table 26:  Excerpt from APA Report 154, Table A2 

 

Fastener Panel 
Ultimate Loads 

(plf) 

Size 
Spacing 

(in) Type 
Thickness 

(in) 

No. 
of 

Tests Min. Max. Avg. 

Target 
Design 
Shear 

Load 
Factor(a) 

RATED SHEATHING 
19/32 3 950 1033 992 260(b) 3.8 8d 6 Plywood 
5/8 4 689 1000 854 260(b) 3.3 

(a) The load factor is determined by dividing the average ultimate load by the target design shear.  
(b) Design shear increased for “over-thick” panel, studs 16” o.c. or panel placed with 8’ length 

perpendicular to framing. 
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Table 27:  Summary of APA Report 154 

 

950
992

1033
689

1000
863.5 1

863.5 1

Average 913
Standard Deviation 119
COV 0.13
1
Estimated from data in APA Report 154.

Ultimate 
Capacity 

(plf)

19
/32

Panel Thickness (in)

5
/8

 

The standard deviation and distribution of the APA wall tests are needed to 

calculate the reliability of SDPWS.  Table 27 includes one of these two parameters.  

The distribution is expected to be lognormal as found with the test results reported in 

Section 3.3.4.  To verify the accuracy of the COV in Table 27, it was compared with the 

5% lower exclusion value for the data from APA Report 154.  Table 28 shows that the 

calculated standard deviation is very close to the 5% lower exclusion value.  Since the 

5% lower exclusion value is commonly used for timber design values, the actual 

standard deviation of ultimate unit shear capacity from the APA test data is more 

accurately 112 plf. 
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Table 28:  Comparison of SDPWS Nominal Unit Shear to the 5th Percentile 

 

Average 913 913
COV 0.130 0.123
Standard Deviation 119 112

5th Percentile 718 728

 APA Data + 2 
Estimated 

Points 

Values to 
Match 

SDPWS

 

 

5.2.1 Reliability Model 

The reliability model begins with the limit state equation.  A basic limit state 

equation is given in Eq. 11 which is repeated here.  Failure occurs when g(x) <0.  This 

results in the basic design equation shown in Eq. 15. The load factors are given in 

ASCE 7 (2005).   

g(x) = R-S Eq. 11 

 
Eq. 15 

Where, 

Rn = Nominal Strength for a Given 

Failure Mode 

Qn = Nominal Design Load 

φ = Resistance Factor 

γ = Load Factor 

Since R and S are random variables, or multiple random variables, statistical 

parameters must be known for each.  The distribution function must be known.  For the 

distributions used in this thesis, two statistical parameters, the mean and the standard 

∑
=

γ≥φ
m

1i
niin QR
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deviation, are needed.  Additionally the random variables must be identified.  The wind 

load, the shear wall strength, the dead load restraining force, and the specific gravity of 

the framing lumber have been identified as random variables.  Of these four random 

variables, the parameters are known for wind load (van de Lindt and Rosowsky 2005), 

the dead load (Ellingwood, et al 1980), and the specific gravity (ASTM D2555).  The 

parameters for the shear wall unit shear strength were determined from the wall testing 

presented in this thesis.  Table 29 summarizes the parameters known thus far. 

Table 29: Summary of Distributions 

 

Item nX
X  

vx (cov) DF 
Dead Load 1.05 0.1 Normal 

Wind Load 0.8 0.35 Type 1 
Specific Gravity, G 1.0 0.11 Lognormal2 

Shear Wall Capacity Unknown Varies3 Lognormal3 
1From ASTM D 2555 
2From specific gravity test of lumber from samples 

3From shear wall test results 

 

The formation of the limit state function, g(x), then includes the unit shear 

strength of the shear wall, V, the specific gravity of the framing lumber, G, the wind load, 

VW, and the dead load, P.  For the limit state of shear:  
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Eq. 16 

 Eq. 17 

  

 
 

 
Eq. 18 

 

 

 

Eq. 18 shows the relationship of the average shear load to the bias factor, 

resistance factor, load factor, and the nominal unit shear strength. 

5.2.2 Reliability Analysis Results 

Since the SDPWS shear wall is considered as fully restrained, only two of the 

four random variables are considered to determine the reliability of the SDPWS unit 

shear capacity.  The two random variables are the wall shear strength and the wind 

load.  These two random variables were applied to Eq. 11.  Using the first order second 

moment, FOSM, reliability method the reliability index β was determined to be 3.27 for 

the 15/32” shear wall tabulated in SDPWS for a fully restrained condition.  Recall from 

Section 2.6 that the SDPWS values are 2.8 times the APA Report 154 target design 

shear.  Therefore, as determined by the quotient of the average ultimate load, 913 plf, in 
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Table 25 and the nominal unit shear capacity, 730 plf, in SDPWS, Table 6, the bias 

factor used in SDPWS is 1.25.  The calculations are shown in Appendix D. 

The target reliability index, β, for the calibration of the partially restrained shear 

walls tested will be 3.25 since the SDPWS nominal unit shear capacity has a reliability 

index of 3.27.  This is reasonable based on other literature (van de Lindt and Rosowsky 

2005). 

5.3 Base Calibration of Partially Restrained Unit Shear Capacities 

The reliability index of the unit shear capacity of the unrestrained shear wall was 

calculated next.  Using the mean unit shear capacity of wall E, 162 plf, from Table 12, 

the reliability index was calculated using the FOSM method.  The calculations are 

shown in Appendix E for a bias factor of 1.  With a bias factor of 1, the reliability index, 

β, was determined to be 2.59, Table 30.  The calculations were iterated changing the 

bias factor, Table 30, and the results were plotted in Graph 28.  The calibrated bias 

factor was determined from the graph and verified again with calculation.  A summary of 

the results is shown in Table 30. 

This procedure was repeated for the remaining partially restrained walls A, B, C, 

and D.  A summary of the results are shown in Table 31.  Note that the calibrated 

values shown in Table 31 simply calibrate all of the partial restraint conditions from the  

tests and the SDPWS (APA) values to the target reliability index, β=3.25.  This is 

appropriate for the ASD load combination D+W with a safety factor, Ω=2.0.  For the 

mechanical hold down, Group A walls, the unrestrained Group E walls, and the SDPWS 
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(APA) fully restrained wall, this is also appropriate for the LRFD load combination 

1.2D+1.6W with a resistance factor, φ=0.8. 

Table 30:  Nominal Unit Shear Calibration for Unrestrained Wall E 

 

V(Strength) Vw(Load) 

uVN aV uV σV uVwN aVw uVw σVw 

plf   plf Plf plf   plf plf 

β 

162.0 1.00 162 23.5 81.0 0.8 64.8 22.7 2.59 

154.3 1.05 162 23.5 77.1 0.8 61.7 21.6 2.72 

147.3 1.10 162 23.5 73.6 0.8 58.9 20.6 2.84 

140.9 1.15 162 23.5 70.4 0.8 56.3 19.7 2.96 

135.0 1.20 162 23.5 67.5 0.8 54.0 18.9 3.07 

129.6 1.25 162 23.5 64.8 0.8 51.8 18.1 3.19 

126.6 1.28 162 23.5 63.3 0.8 50.6 17.7 3.25 

124.6 1.30 162 23.5 62.3 0.8 49.8 17.4 3.3 

120.0 1.35 162 23.5 60.0 0.8 48.0 16.8 3.39 

115.7 1.40 162 23.5 57.9 0.8 46.3 16.2 3.49 

111.7 1.45 162 23.5 55.9 0.8 44.7 15.6 3.59 

108.0 1.50 162 23.5 54.0 0.8 43.2 15.1 3.69 

104.5 1.55 162 23.5 52.3 0.8 41.8 14.6 3.78 

 

The reason that the nominal unit shear values shown in Table 31 are appropriate 

for the ASD and LRFD load combinations stated is that the dead load will not affect the 

wall strength in these load combinations.  There are additional load combinations (Table 

24) which require a reduced load factor for the dead load. This insures that dead load 

will not be a limiting factor and these combinations are addressed in section 5.4.  

Therefore, the unit shear capacity of the wall is the only random variable on the strength 

side considered for this step. 

To illustrate the relationship between partial restraint and nominal unit shear 

strength, the results shown in Table 31 are graphed in Graph 29.  Note that the shape 

of the graph is similar to Graph 12.  The difference between these two graphs is shown 

in Graph 30.  Note that the fully restrained wall has 100% unit shear capacity in both the  
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Graph 28:  Calibration of Unrestrained Shear Wall 

nominal, calibrated, the ultimate and test result.  They are the same due to the 

normalization.  The unrestrained wall is nearly the same as well.  The larger difference 

occurs for walls B, C, and D.  This difference is due to the shift in the percent of full 

restraint.  The mechanical hold down cannot achieve the same unit shear capacity as a 

wall restrained from the top.  This was discussed in Section 3.3.3.  The difference in the 

two points in Graph 30 is from the calibration as well as the percent of full restraint 

occurring in the normalization process. 
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Table 31:  Calibrated Shear Wall Capacities 

 

Calibrated Wall Values1 

  A B C D E SDPWS2 
Wall Restraint 

(lb) 4416 1104 2208 3312 0 5051 

Ultimate Unit Shear Capacity (from tests), plf 

 555 345 496 615 162 786 

Bias Factor 

a2 1.15 1.19 1.16 1.16 1.28 1.25 

Nominal Unit Shear Capacity, plf 

 483 289 428 529 127 631 

Normalized 

Phold down 0.874 0.219 0.437 0.656 0.000 1 

Vcap(%) 0.764 0.458 0.678 0.838 0.200 1.000 
1
Calibrated for ASD load combination D+W 

2
From SDPWS and APA Report 154 

a2 = Unit shear capacity bias factor 

 

y = 0.797x + 0.2664
R² = 0.962

y = -0.5088x2 + 1.3094x + 0.1993
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Graph 29: Partial Restraint Effect on Strength - Calibrated 
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Graph 30:  Comparison of Calibrated Partial Restraint Effect 

5.4 Extended Calibration of Partially Restrained Unit Shear Capacities 

5.4.1 Calibration with Reduced Dead Load Combinations 

Next, the unit shear capacities were calibrated for the ASD and LRFD load 

combinations that have a dead load factor, γD, less than 1.  This is a critical part of the 

calibration to consider since the partially restrained shear walls use a dead load applied 

to the top of the wall to resist the lateral wind load. 

5.4.2 Calibration without a Variation in the Specific Gravity 

First, the calibration was performed without considering the specific gravity of the 

framing lumber as a random variable.  The random variables for this calibration are the 
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unit shear capacity, V, the wind load, VW, and the dead load, P.  These random 

variables are defined in Table 29. 

The shear wall ultimate unit shear capacity is a function of the restraining force.  

As shown in Eq. 14, the ultimate unit shear capacity of a partially restrained shear wall 

is related to the fully restrained shear wall unit shear capacity by the partial restraint 

factor, Cpr-u.  This relationship was used for the second calibration.  Since the restraining 

force, PD, is a random variable, then Cpr-u varies.  However, Cpr-u cannot be greater than 

1.  This limit cannot be accounted for in a FOSM model.  Therefore, for the second 

calibration, a Monte Carlo simulation was used. 

The Monte Carlo simulation was conducted in Excel 2010. To adequately capture 

the target reliability index, β, of 3.25 (pf = 5.77e-4), four million simulations were used.  

This was done by repeating 100,000 simulations 40 times for each increment of bias 

factor studied.   The calibration consisted of varying the bias factor to achieve the target 

reliability index, β=3.25; similar to what was done with the first calibration with the test 

data.  The results were graphed to determine the calibrated bias factor similar to Graph 

28.  The value from the graph was then confirmed with 4 million simulations. The Monte 

Carlo simulation is described below. 

5.4.3 Random Variables used for Calibration 

The nominal shear capacity of the wall is: 
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or,  

 

 

 

 

Since V is a random variable, Vn is a random variable as well.  For this step, the 

specific gravity, G, is considered a constant. 

Recall from Eq. 14 that the partially restrained unit shear capacity is the fully 

restrained unit shear capacity modified by the partial restraint factor (Eq. 13) which is 

repeated here: 

Cpr-u = -0.6393λ2+1.4331λ+0.206 ≤ 1.0 Eq. 13 
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The mean dead load restraining force applied to the wall is: 

 
 

 
 

Adding the load factor:  

 

Eq. 20 

 

 

 
 

The nominal wind load is taken as the nominal capacity of the shear wall.  

Therefore, the nominal wind load is calculated as shown here: 

 
Eq. 21 

 
 

or,  

 

Eq. 22 
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And, for a partially restrained shear wall, the limit state equation is: 

 
Eq. 23 

 

 

5.4.4 Random Variable Distributions 

Although Eq. 23 only indicates two random variables, keep in mind that there is a 

third random variable, PD, included in the partial restraint factor, Cpr-u.  Table 34 

summarizes the three random variables necessary for Eq. 23 and the Monte Carlo 

simulation.  The bias factor for V is indicated as “unknown” because this is what is being 

determined by the calibration. 

Table 32: Summary of Distributions 

Random 
Variable Item nX

X  vx 
(cov) DF 

PD Dead Load 1.05 0.1 Normal 

VW Wind Load 0.8 0.35 Type 1 

V 
Shear Wall 
Capacity 

Unknown 0.123 Lognormal4 

1From ASTM D 2555 
2From specific gravity test of lumber from samples 
3From Table 28 
4From shear wall test results 

5.4.5 Steps used for Monte Carlo Simulation 

The Monte Carlo simulation was conducted with the following steps: 

1. Begin with the restraining force.  This is the restraining force from walls B, C, and 

D; 1104 lb, 2208 lb, and 3312 lb respectfully. 

a. Calculate the mean dead load restraining force, DP , using Eq. 20 and its 

bias factor shown in Table 32. 

( ) WW VVVVg −=,

 wallthe ofcapacity  shear unit    V

shear unit load   windV

Where,

W

=

=
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2. Calculate the partial restraining factor, Cpr-u, Eq. 13 using the restraining force 

from step 1. 

3. Determine the mean ultimate unit shear strength, V , from APA Report 154, and 

its statistical properties. 

4. Start with a trial bias factor, a2=0.8. 

5. Calculate the nominal unit shear strength, Vn, using Eq. 19, with the specific 

gravity of the wall framing members, G=0.36 for SPF –S. 

6. Calculate the nominal wind load, VWn, using Eq. 21. 

7. Calculate the mean wind load, WV , using Eq. 22 and its statistical properties. 

8. Monte Carlo Simulation 

a. Use a random number generator to generate a random probability 

between 0 and 1 and calculate the inverse of the CDF (normal distribution) 

for the dead load, PD, at the random probability. 

b. Using the result of step 8.a, calculate Cpr-u using Eq. 13. 

c. Use a random number generator to generate a random probability 

between 0 and 1 and calculate the inverse of the CDF (lognormal 

distribution) for the unit shear capacity, V, at the random probability. 

d. Calculate the partially restrained unit shear capacity of the wall by 

modifying the unit shear capacity, V, from step 8.c by the partial restraint 

factor, Cpr-u, from step 8.b. 

e. Use a random number generator to generate a random probability 

between 0 and 1 and calculate the inverse of the CDF (Type I extreme 

value distribution) for the wind load, VW, at the random probability. 

f. Using Eq. 23 calculate the survival of the function (g(x)>0 for survival).  

Set a flag equal to zero for survival or one for failure. 

g. Repeat steps 8.a to 8.f 100,000 times, and add the number of failures in 

step 8.f.   

9. Repeat step 8 forty times and sum the total number of failures from step 8.g.  

Calculate the reliability of the 4,000,000 samples and then calculate the reliability 

index, β as shown: 
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10. Plot the bias factor, a2, and the reliability index, β, from step 9. 

11. Increase the bias factor, a2, increment (0.1 was used) and repeat steps 5 to 11 

until 253.≥β . 

12. Using the graph from step 10, determine the correct bias factor, a2, to obtain the 

target reliability index β=3.25. 

13. Repeat steps 5 to 9 to validate the bias factor, a2, determined in step 12. 

14. Make correction to the bias factor a2 if necessary and repeat steps 5 to 9. 

15. Repeat entire procedure for next wall set (restraining load). 

An illustration of the Excel spreadsheet used for the Monte Carlo simulation is 

shown in Appendix F. 

5.4.6 Calculations for Monte Carlo Simulation 

The known distributions of each random variable were used in the MCS to 

generate random values to evaluate Eq. 11.  As shown in Table 32 and again in Table 

34, three distributions were used, Normal, Log-Normal, and Type I.  The cumulative 

distribution function, CDF, for each of these was used along with a random number 

generator to generate values of the random variables.  The random number generator is 

used to generate a probability which can then be evaluated with the CDF to determine 

the random variable value at the generated probability. 
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For normal distribution, denoted as N(µ, σ), the PDF is given as: 

  

Where, 
µ=mean of the variate 
σ=standard deviation of the variate 

 
The CDF is then given as the integral of the PDF and is commonly referred to as 

FX(x).  The CDF, FX(x), is given as: 

 

Where, 
FX(x)=the probablity that -∞ < X ≤ x 
µ=mean of the variate X 
σ=standard deviation of the variate X 

For the standard normal distribution, denoted as N(0,1), the CDF is commonly 

noted as FS(s) = Φ(s).  And the value of a standard normal variate at a cumulative 

probability, p, is Φ−1(s).   Φ(s) and Φ−1(s) are commonly tabulated.  With the use of the 

table of Φ(s), probabilities can be easily determined for any normal distribution by 

substituting: 

 

As described above for a standard normal variate, for a given probability, any 

normal variate can be determined using: 
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Therefore, for any given probability, Φ(x), the value of x can by calculated.  A 

random number generator is used to generate the probability Φ(x) for which a given 

value for the random variate X is calculated using Φ-1 (x).  Therefore, if p is a random 

probability, Φ(x), the value of the random variate is calculated as: 

 

Where, 
p= probability that  -∞ < X ≤ x, and is randomly generated 
µ=mean of the variate X 
σ=standard deviation of the variate X 

 
The use of this for the MCS is illustrated in Appendix F. 

For lognormal distribution, the PDF is given as: 

  

Where, 
 

 The parameters λ and ζ are related to the mean µ and the standard deviation σ 

of the variate as (Ang and Tang, 1975): 
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If σ/µ is ≤ 0.30, then, 
 

 

The CDF is then given as the integral of the PDF and is given as: 

 

Where, 
P=the probability that X is between a and b 
λ=mean of the lognormal of the variate X 
ζ=standard deviation of the lognormal of the variate X 

The lognormal distribution of a random variable X is a normal distribution of the 

natural logarithm of X.  Therefore, the commonly tabulated values of Φ(s) and Φ−1(s) for 

standard normal distribution can be used similarly to the description earlier where: 

 

And also similar to the explanation above for normal distribution, for a given 

probability, the normal variate can be determined using: 

 

Therefore, for any given probability, Φ(x), the value of x can by calculated.  A 

random number generator is used to generate the probability Φ(x) for which a given 

value for the random variate X is calculated using Φ-1 (x).  Therefore, if p is a random 

probability, Φ(x), the value of the random variate is calculated as: 
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Where, 
p= probability that  -∞ < X ≤ x, and is randomly generated 
λ=mean of the lognormal of the variate X 
ζ=standard deviation of the lognormal of the variate X 

The use of this for the MCS is illustrated in Appendix F. 

For the Gumbel Type I distribution, the CDF is given as Eq. 9 and is repeated 

here: 

( ) ( )( )[ ] ∞<<∞−−α−−= xuxexpexpxF nXn
                 Eq. 9 

Where, 
un = location parameter 
αn = scale parameter 

 

  The location and scale parameters are related to the mean and standard 

deviation of the random variable X as: 
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Where, 

αn = scale parameter 
un = location parameter 
σx = standard deviation of random variable X 

µx = mean of random variable X 
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Since the CDF is given directly in Eq. 9, the probability that -∞ < X ≤ x is FXn
(x).  

Eq. 9 can be rearranged, Eq. 24, to solve for the value of x at a random probability: 

( )( )[ ] 1
xFlnlnux

nX

n

n −
α

−=  Eq. 24 

Where, 
un = location parameter 
αn = scale parameter 
FXn

(x) = probability of Xn, and is randomly generated 

            

 

The use of this for the MCS is illustrated in Appendix F. 

5.4.7 Results of the Monte Carlo Simulation for ASD 

The results of the MCS for the ASD load combination 0.6D+W are summarized in 

Table 33 for wall Groups A, B, C, D, E, and SDPWS.  The values for A, E, and SDPWS 

are from the FOSM analysis summarized in Table 31.  For these walls, the restraining 

force was not the limit state of failure and was not modeled in the MCS.  The ASD load 

combination will assure there is enough dead load for these conditions. 

Table 33 summarizes the restraining force, the average unit shear capacity from 

the test results and SDPWS, the bias factor from the calibration, and the resulting 

nominal unit shear capacity.  The nominal unit shear capacity was then normalized to 

the SDPWS nominal unit shear capacity.  Similarly, the ratio of the restraining force to 

the SDPWS restraining force was also tabulated to achieve the nominal unit shear 

capacity. 
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Table 33:  Summary of MCS for ASD without Specific Gravity 

 

Calibrated Wall Values 

Wall A B C D E SDPWS 

Restraint, γDPD 4416 1104 2208 3312 0 5051 

Ultimate Unit Shear Capacity (from tests), plf 

 555 345 496 615 162 786 

Bias Factor, a2 
 1.150 0.944 0.941 1.001 1.280 1.245 

Nominal Unit Shear Capacity, plf 

 483 364 527 615 127 631 
Normalized 

Phold down, λ’1 0.874 0.219 0.437 0.656 0.000 1.000 

Vcap(%) 0.764 0.577 0.834 0.974 0.200 1.000 

1

hCV

P

P

P

Gn

DD

SDPWSn

DD γ
=

γ
=λ

−

'  

 

Just as before, a wall restrained with a hold down (wall A) only has a nominal unit 

shear capacity equal to 76% of a fully restrained wall.  Wall E has a nominal unit shear 

capacity equal to 20% of a fully restrained wall.  A curve was fit to the normalized 

results of Table 33 (zunzun.com) to create a function for the partial restraint factor Cpr-n.  

The equation that best fit is the Bleasdale-Nelder with offset, Eq. 25.  The R2 value is 

1.0 for this equation. The specific equation that fits Table 33 is shown in Eq. 26 and is 

applicable for values of 0 < λ’ ≤ 1.    The normalized results of Table 33, Eq. 26, and the 

test results, from Graph 12, are shown graphically in Graph 31. 
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Offsetbxay d1c ++= − /)(  Eq. 25 

Partial Restraint Factor for 0 ≤ λ’ ≤ 1, 

200015304919C 1291017387

npr .)..(
./.' +λ+= −−

−  

For λ’=0, 

       Cpn-n = 0.20 

For λ’>1, 

       Cpn-n = 1.0 

 

Eq. 26 

 

As expected, the partial restraint function is shifted up and to the left of the actual 

test result relationship.  This is due to the ASD load combination requiring the use of 

only 60% of the applied dead load restraining force. In other words, the actual 

restraining force on the shear wall with this load combination is 167% of the factored 

load, γDPD. 
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Graph 31:  Partial Restraint Effect, ASD, without Specific Gravity 
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5.4.8 Calibration with a Variation in the Specific Gravity 

Next, the calibration was performed considering the specific gravity of the 

framing lumber as a random variable, G.  Specific gravity is also a random variable as 

discussed earlier.  The MCS was performed as previously explained for Sections 5.4.2 

through 5.4.6 with the added random variable for specific gravity, G.   Table 34 

summarizes the random variables and their distributions. 

Table 34: Summary of Distributions 

Random 
Variable Item nX

X  δx 
(cov) DF 

PD Dead Load 1.05 0.1 Normal 

VW Wind Load 0.8 0.35 Type 1 

G 
Specific 
Gravity, G 

1.0 0.11 Lognormal2 

V 
Shear Wall 
Capacity 

Unknown 0.123 Lognormal4 

1From ASTM D 2555 
2From specific gravity test of lumber from samples 
3From Table 28 
4From Test Results 

 

 The distribution parameters for specific gravity were modified for the number of 

framing members.  Since the framing members are all fastened together with nails to a 

single WSP, the specific gravity for the system can be the average for the framing 

members. 

Therefore, 

∑
=

=
n

1i
iG

n

1
G  

 

Eq. 27 

 

 The average value, Eq. 27, for the specific gravity for the same species of lumber, is 

simply the published value for the species.  
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 Assuming G1 through Gn are statistically independent and from the same 

population, the variance is (Ang and Tang 1975): 









= ∑

=

n

1i
i2

G
n

1
Var

n

1
GVar )(   

( )
n

n
n

1
GVar

2
2

2

σ
=σ=)(  Eq. 28 

 

Therefore, from Eq. 28, the standard deviation for the random variable G, is equal 

to nσ , where σ is the standard deviation of the samples.  Using Eq. 28, the coefficient 

of variation, δ, of random variable G can be calculated as nG δ=δ , where δ is the 

coefficient of variation of the samples.  Using this principle, the coefficient of variation 

for the wall assembly is adjusted as a weighted value.  Recalling that for the test 

samples, the two sole and top plates are nominally half the length of the four wall studs, 

the weighted coefficient of variation is calculated as shown: 

( )
0450

2
124

10

G

G .
.

=
+

=
σ

=δ  

Therefore, the coefficient of variation for random variable G is 0.045.  For the MCS, the 

coefficient of variation, 0.045, is used instead of 0.1 as indicated in Table 34. 

5.4.9 Results of the Monte Carlo Simulation for ASD 

As before, without the random variable G in the MCS, the results of the MCS for 

the ASD load combination 0.6D+W are summarized in Table 35 for walls A, B, C, D, E 

and SDPWS.  For this simulation, all of the unit shear values were calibrated 

considering the addition of the random variable G. 

Table 35 summarizes the results as explained in Section 5.4.7 for Table 33.
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Table 35:  Summary of MCS for ASD with Specific Gravity 

Calibrated Wall Values 

Wall A B C D E SDPWS 

Restraint, γDPD 4416 1104 2208 3312 0 5051 

Ultimate Unit Shear Capacity (from tests), plf 

 555 345 496 615 162 786 
Bias Factor, a2 

 1.150 0.947 0.944 1.003 1.245 1.248 

Nominal Unit Shear Capacity, plf 
 483 363 524 613 130 629 

Normalized 

Phold down, λ’1 0.877 0.219 0.439 0.658 0.000 1.000 

Vcap(%) 0.767 0.577 0.833 0.974 0.207 1.000 

1

hCV

P

P

P

Gn

DD

SDPWSn

DD γ
=

γ
=λ

−

'  

 

Just as before, a wall restrained with a hold down (wall A) only has a nominal unit 

shear capacity equal to 76% of a fully restrained wall.  Wall E has a nominal unit shear 

capacity equal to 21% of a fully restrained wall.  A curve was fit to the normalized 

results of Table 35 (zunzun.com) to create a function for the partial restraint factor Cpr-n.  

The equation that best fit is the Bleasdale-Nelder with offset, Eq. 25.    The specific 

equation that fits Table 35 is shown in Eq. 29 and is applicable for values of 0<λ’≤1.  

The R2 value is 1.0 for this equation. The normalized results of Table 35, Eq. 26, and 

the test results, from Graph 12, are shown graphically in Graph 32. 

Partial Restraint Factor for 0 < λ’ ≤ 1, 

2070163064210C 2881019257

npr .)..(
./.' +λ+= −−

−  

For λ’=0, 

       Cpn-n = 0.21 

For λ’>1, 

       Cpn-n = 1.0 

 

Eq. 29 
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As expected, the partial restraint function is shifted up and to the left of the actual 

test result relationship.  This is due to the ASD load combination requiring the use of 

only 60% of the applied dead load restraining force.  In other words, the actual 

restraining force on the shear wall with this load combination is 167% of the factored 

load, γDPD. 
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Graph 32:  Partial Restraint Effect, ASD, with Specific Gravity 

5.4.10 Results of the Monte Carlo Simulation for LRFD 

The procedures explained for the MCS for ASD were repeated for LRFD.  Since 

the resistance factor, φ=0.8, is already utilized by SDPWS, the bias factor was adjusted 

to calibrate the partial restraint factor for the LRFD strength values. The results of the 

MCS for the LRFD load combination 0.9D+1.6W are summarized in Table 36 for walls 

A, B, C, D, E, and SDPWS.  The values for A, E, and SDPWS are from the FOSM 
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analysis summarized in Table 31.  For these walls, the restraining force was not the limit 

state of failure and was not modeled in the MCS. 

Table 36:  Summary of MCS for LRFD without Specific Gravity 

Calibrated Wall Values 

Wall A B C D E SDPWS 

Restraint, γDPD 4416 1104 2208 3312 0 5051 

Ultimate Unit Shear Capacity (from tests), plf 

 555 345 496 615 162 786 
Bias Factor, a2 

 1.150 1.167 1.166 1.170 1.280 1.245 

Nominal Unit Shear Capacity, plf 
 483 295 425 527 127 631 

Normalized 

Phold down, λ’1 0.874 0.219 0.437 0.656 0.000 1.000 

Vcap(%) 0.764 0.467 0.673 0.834 0.200 1.000 

1

hCV

P

P

P

Gn

DD

SDPWSn

DD γ
=

γ
=λ

−

'  

 

Just as before, a wall restrained with a hold down (wall Group A) only has a 

nominal unit shear capacity equal to 76% of a fully restrained wall.  Wall E has a 

nominal unit shear capacity equal to 20% of a fully restrained wall.  A curve was fit to 

the normalized results of Table 36 (zunzun.com) to create a function for the partial 

restraint factor Cpr-n.  The equation that best fit is the Bleasdale-Nelder with offset, Eq. 

25.  The R2 value is 1.0 for this equation. The specific equation that fits Table 36 is  

Partial Restraint Factor for 0 < λ’ ≤ 1, 

    200096909500C 911215392

npr .)..(
./.' +λ+= −−

−  

For λ’=0, 

       Cpn-n = 0.20 

For λ’>1, 

       Cpn-n = 1.0 

 

Eq. 30 
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shown in Eq. 30 and is applicable for values of 0 < λ’ ≤ 1.    The normalized results of 

Table 36 and Eq. 30 are shown graphically in Graph 33. 
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R² = 0.9999

0%

20%

40%

60%

80%

100%

120%

0% 20% 40% 60% 80% 100% 120%

%
 o

f 
F

u
ll
 S

h
e

a
r 

C
a
p

a
c

it
y

% of Full Restraining Force

Holdown

Monte Carlo

B-N w/o G

2nd Order Fit

Second Order Fit

 

Graph 33:  Partial Restraint Effect, LRFD, without Specific Gravity 

 Although not directly comparable, the partial restraint function utilizing Eq. 30 is 

extremely close to the partial restraint function shown as the second order fit equation in 

Graph 29.   This is due to the LRFD load combination requiring the use of only 90% of 

the applied dead load restraining force.  An additional second order curve was fit for 

comparison to the B-N fit.  The resulting curve has an R2 value of 0.9999.  The equation 

for the second order curve is simpler than that of the B-N curve and is presented in Eq. 

31. 
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5.4.11  Calibration with a Variation in the Specific Gravity 

Next, the calibration was performed considering the specific gravity of the 

framing lumber as a random variable, G.  This is the same as explained in section 5.4.8, 

but using LRFD. 

5.4.12 Results of the Monte Carlo Simulation for LRFD 

As with the previous simulation, without the random variable G, the results of the 

MCS for the LRFD load combination 0.9D+1.6W are summarized in Table 37 for walls 

A, B, C, D, E and SDPWS.  For this simulation, all of the unit shear values were 

calibrated considering the addition of the random variable G. 

Table 37 summarizes the results as explained in Section 5.4.10. 

Almost identical to the previous simulation, a wall restrained with a hold down 

(wall Group A) only has a nominal unit shear capacity equal to 77% of a fully restrained 

wall.  Wall E has a nominal unit shear capacity equal to 21% of a fully restrained wall.  A 

curve was fit to the normalized results of Table 37 (zunzun.com) to create a function for 

the partial restraint factor Cpr-n.  The equation that best fit was the Bleasdale-Nelder with 

offset, Eq. 25.  The R2 value is 1.0 for this equation. The specific equation that fits Table 

Partial Restraint Factor for 0 ≤ λ’ ≤ 1, 

       203029414980C 2
npr ... ' +λ+λ−=−  

For λ’=0, 

       Cpn-n = 0.20 

For λ’≥1, 

       Cpn-n = 1.0 

 

Eq. 31 
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37 is shown in Eq. 32 and is applicable for values of 0 < λ’ ≤ 1.    The normalized results 

of Table 37 and Eq. 32 are shown in Graph 34. 

Table 37:  Summary of MCS for LRFD with Specific Gravity 

Calibrated Wall Values 

Wall A B C D E SDPWS 

Restraint, γDPD 4416 1104 2208 3312 0 5051 

Ultimate Unit Shear Capacity (from tests), plf 

 555 345 496 615 162 786 

Bias Factor, a2 
 1.150 0.947 0.944 1.003 1.245 1.248 

Nominal Unit Shear Capacity, plf 

 483 294 424 525 130 629 
Normalized 

Phold down, λ’1 0.877 0.219 0.439 0.658 0.000 1.000 

Vcap(%) 0.767 0.467 0.674 0.834 0.206 1.000 

1

hCV

P

P

P
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SDPWSn
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=
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−

'  

 

 

Partial Restraint Factor for 0 < λ’ ≤ 1, 

     207083008260C 188210282

npr .)..(
./.' +λ+= −−

−  

For λ’=0, 

       Cpn-n = 0.21 

For λ’>1, 

       Cpn-n = 1.0 

 

Eq. 32 

 

The results are only slightly different from the curve shown in Graph 33 without 

the added random variable, G.  An additional second order curve was fit for comparison 

to the B-N fit.  The resulting curve has an R2 value of 0.9999.  The equation for the 

second order curve is simpler than that of the B-N curve and is presented in Eq. 33. 
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Since the LRFD calibration curve shown in Graph 34 resembles the actual 

behavior of the actual test walls and since Eq. 33 is simpler than Eq. 32, LRFD is the 

preferred method for design.  The partial restraint factor in LRFD will make more sense 

to the building designer.  The calculation of the partial restraint factor is also easier for 

the building designer. 
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Graph 34:  Partial Restraint Effect, LRFD, with Specific Gravity 

Partial Restraint Factor for 0 ≤ λ’ ≤ 1, 

      208027214810 2 ...C '
npr +λ+λ−=−  

For λ’>1, 

       Cpn-n = 1.0 

 

Eq. 33 
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CHAPTER 6 

DISCUSSION OF NOMINAL UNIT SHEAR VALUES 

This chapter addresses some of the conflicts that exist with current methods of 

determining unit shear values for wood structural panels.  These conflicts directly relate 

to the capacity of a partially restrained shear wall as prescribed in the IRC (2009). 

6.1 Difference in Method to Determine Unit Shear Values 

6.1.1 SDPWS Values for Anchoring Device  

The SDPWS (2005) unit shear values, based on APA Research Report 154 

(APA 2004) cannot be achieved with a conventional mechanical hold down only.  The 

values are reportedly based upon ASTM E72.  The test frame from ASTM E72 is shown 

in Figure 22.  The clamping action of the test fixture is not equivalent to applying a 

conventional hold down on the tension stud as explained earlier. 

APA Research Report 154 (APA 2004) indicates that a timber was used over the 

top of the wall and a double tie rod hold down was used to restrain the tension side of 

the wall.  The double tie rod system over the top of the wall provides a clamping force 

keeping the wall plates in contact with the wall stud.  This action keeps the plates and 

stud from separating, thus reducing the force on the corner nails at the tension side.  

Additionally, the second stud at each end adds additional strength and stiffness even 

though the sheathing is not directly attached to it. 

The conventional mechanical hold down attached to the tension stud does not 

offer the same restraint as the clamping mechanism required by ASTM E72.  The 

elongation of the mechanical hold down allows the tension stud to separate from the 
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bottom plate and there is nothing to keep the top plate from separating from the tension 

stud unless additional building framing exists.  The result is the capacity of the wall is 

reduced.  This was observed in the test specimens and was also observed in the FE 

model. 

 

Reprinted, with permission, from ASTM E72-10 Standard Test Methods of Conducting 
Strength Tests of Panels for Building Construction, copyright ASTM International, 100 
Barr Harbor Drive, West Conshohocken, PA  49428. 

 

Figure 22:  ASTM E72 Test Fixture 

SDPWS (2005) requires either a dead load stabilizing moment or an anchoring 

device at the end of the shear wall.   No difference is given to either restraining device.  

There is a difference between the two; the resulting unit shear strength based on the 

test results shown in Table 12 with an anchoring device is 13% less or 87% of the 
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tabulated nominal unit shear value published in SDPWS (2005).  Therefore, SDPWS 

(2005) should at least provide an anchoring device factor, Ca, as given in Eq. 34.  This 

value should not be confused with the value determined in Chapter 5 which was 

calibrated for design.  The latter is preferred since it was calibrated to ASCE 7-05 and 

the IBC (2009) load combinations to provide a reliability index, β, of 3.25. 

Ca = 0.87 
 

Eq. 34 

 

6.1.2 Use of ASTM E72 

One of the intentions of ASTM E72 is  to provide a test method and a test frame 

that can be used to compare different sheathing materials for use as shear walls to 

resist lateral forces, such as wind loads.  The standard states that it intends to function 

as a shear wall that would typically be used in a building.  The purpose of the standard 

is to provide a relative comparison of sheathing materials. 

While the stated intent of the standard is good and useful, the standard does not 

capture the behavior of partially restrained shear walls that are prescribed in the 2009 

IRC.  It has been explained earlier that there is a large difference between a fully 

restrained shear wall and a wall only restrained in accordance with the 2009 IRC.  

These differences are not tested and the resulting behavior is not captured in ASTM 

E72. 

Due to the increased forces in the corner nails in a partially restrained shear wall, 

as well as shear walls having no dead load along the top of the wall restrained with a 

hold down, wall sheathing intended as shear wall material should be tested to capture 
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this behavior.  This will provide a relative comparison of different materials. The 

behavior of the sheathing material at the edges can be crucial to the strength of the wall 

and in fact was the focus of the research conducted by Cassidy (2002). 

ASTM E72 recognizes that a prestress force can greatly influence the results of 

the racking test and restricts the prestress in the hold down rods to 20 lb.  However, 

there is no requirement to report the initial hold down force or the hold down force 

throughout the test.  Reporting of this data should be made so that the entire test 

method to determine the resulting unit shear values is completely transparent if these 

values will be used in design standards. This too will allow for a comparison of different 

sheathing materials. 

6.1.3 Use of ASTM E564 

ASTM E564 states that its use is not intended for classifying sheathing shear 

capacity.  Thus, to this author’s knowledge, it is not used in the design standards.  In 

contrast to ASTM E72, ASTM E564 allows for walls to be constructed in dimensions 

intended for use and with the boundary conditions and restraining forces of the intended 

use.  This results in data that reflects the actual construction of the wall and doesn’t 

attempt to only make a relative comparison of sheathing material shear capacity as 

ASTM E72 does. 

Since the failure of wood shear walls is highly dependent on the capacity and 

response of the fasteners as well as the initial boundary conditions, it makes sense to 

use ASTM E564 for codified design standards for partially restrained wood shear walls.  

This standard was used as the basis of the testing for this thesis as well.  This would 
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also provide a relative comparison of sheathing material performance where edge 

breakout or failure is the limit state. 

6.1.4 Partial Restraint Factors 

It is obvious that the peak capacity of wood shear walls in a fully restrained 

condition is greater than the peak capacity of a wood shear wall with a mechanical hold 

down at the base of the wall.  Therefore, when a wall is partially restrained from the top, 

the partially restrained capacity must be a function of the fully restrained condition (i.e. 

the APA Research Report 154 ultimate capacity) rather than the nominal (SDPWS – 

unless it is calibrated) capacity, or the mechanical hold down restrained capacity.  This 

is best shown in Graph 35 where the partial restraint effect from this research is 

compared with Ni and Karacabeyli’s (2000). 

As explained earlier in Chapter 2, Ni and Karacabeyli (2000) assumed that a wall 

with a mechanical hold down at the base of the wall was fully restrained.  As shown in 

Graph 35, there is a noticeable difference when using this assumption.  The light scale 

represents Ni and Karacabeyli’s (2000) partial restraint factor and partial restraint force.  

Their curve was scaled to the hold down capacity from this research to make the 

comparison. 

Another problem with using the unit shear capacity developed with a mechanical 

hold down as the fully restrained unit shear capacity is that this capacity is unknown 

unless testing is conducted or unless a partial restraint factor for a mechanical hold 

down is used as proposed in this research.  Therefore, a correlation must always be 

made to between the unit shear capacity with a mechanical hold down and the nominal 

value in SDPWS (2005). 
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CHAPTER 7 

SUMMARY, CONCLUSION, AND RECOMMENDATIONS FOR FUTURE RESEARCH 

7.1 Summary 

The unit shear capacity of partially restrained WSP shear walls constructed in 

accordance with the 2009 IRC was studied in this thesis.  A nonlinear finite element 

model was developed to understand and describe the behavior of these walls.  

Additionally, as a focus of this thesis, a reliability analysis was conducted to develop 

modification factors to fully restrained unit shear capacities.  These modification factors 

were calibrated to provide a uniform reliability index of 3.25.  

7.2 Conclusions 

The following conclusions are made from this research effort: 

1. The SDPWS (2005) nominal unit shear capacity,  730 plf, for 15/32” WSP with 

8d common nails at 6” o.c. at the perimeter and 12” o.c. at the intermediate 

members provides a reliability index, β=3.25, for wind load using the ASD 

reduction factor of 2 per SDPWS (2005) and using the LRFD resistance factor 

of 0.8.  This was used as the target reliability index for the calibration. 

2. The derivation of design values for use in SDPWS with ASTM E72 is not 

appropriate for walls anchored with mechanical hold downs or partially 

restrained IRC (2009) prescriptive walls.  The ASTM E72 test frame provides 

a clamping action not present in partially restrained shear walls.  ASTM E564 

is appropriate for shear walls with these types of restraint. 
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3. ASTM E72 should add a requirement to record the initial and resulting hold 

down force for a racking test.  Though it has a limit of a maximum 20 lb of 

initial hold down force, it does not have to be measured for the test. 

4. The SDPWS (2005) nominal unit shear capacities, based on APA Research 

Report 154 (APA 2004), cannot be achieved with a conventional mechanical 

hold down at the base of the wall for a 4’ x 8’ WSP shear wall. 

5. For the ASD design methodology, partially restrained shear walls have an 

allowable nominal unit shear capacity to resist wind load, V’n, as shown in 

Eq. 35.  This is applicable to 4’ x 8’ WSP shear walls constructed in 

accordance with the IRC (2009) using a mechanical hold down device (i.e. 

Simpson HUD14) at the base of the wall. 

ASD

Gan'

n
C

CCV
V =  

 
Where, 

Vn = nominal unit shear capacity per SDPWS (2005) 
Ca = anchor reduction factor 
Ca = 0.77 
CG = 1-(0.5-G) 
G = specific gravity of the framing lumber 
CASD = 2 

Eq. 35 

6. For the ASD design methodology, wood shear walls partially restrained by a 

dead load restraining force, P, have a nominal unit shear capacity to resist 

wind load, V’n, as shown in Eq. 36. The controlling IBC (2009) load 

combination is 0.6D+W.  This is applicable to 4’ x 8’ WSP shear walls 

constructed in accordance with the IRC (2009). 
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ASD
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C
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V =  

Where, 
Vn = nominal unit shear capacity per SDPWS (2005) 
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h = height of shear wall 
P = 0.6PD [per IBC (2009)] (restraining force) 
CASD = 2 

Eq. 36 

7. For the LRFD design methodology, partially restrained shear walls have an 

allowable nominal unit shear capacity to resist wind load, φV’n, as shown in 

Eq. 37. This is applicable to 4’ x 8’ WSP shear walls constructed in 

accordance with the IRC (2009) using a mechanical hold down device (i.e. 

Simpson HDU14) at the base of the wall. 

Gan

'

n CCVV φ=φ  

 
Where, 

φ = strength reduction factor 
φ = 0.8 
Vn = nominal unit shear capacity per SDPWS (2005) 
Ca = anchor reduction factor 
Ca = 0.77 
CG = 1-(0.5-G) 
G = specific gravity of the framing lumber 

Eq. 37 

8. For the LRFD design methodology, wood shear walls partially restrained by a 

dead load restraining force, P, the nominal unit shear capacity, φV’n, as 

shown in Eq. 38.  The controlling IBC (2009) load combination is 
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0.9D + 1.6W. This is applicable to 4’ x 8’ WSP shear walls constructed in 

accordance with the IRC (2009). 

Gprn
'
n CCVV φ=φ  

Where, 
φ = strength reduction factor 
φ = 0.8 
Vn = nominal unit shear capacity per SDPWS (2005) 
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G = specific gravity of the framing lumber 
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h = height of shear wall 
P = 0.9PD [per IBC (2009)] (restraining force) 

Eq. 38 

9. The curve generated by the partial restraint factor, Cpr, in Eq. 38 (LRFD 

method) more accurately emulates the actual shear wall behavior than the 

same factor in Eq. 36 (ASD method).  The ASD controlling load combination 

creates a shift in the curve of the partial restraint factor due to use of only 

60% of the dead load restraining force. 

10. The IRC (2009) assumption that shear walls are partially restrained requires a 

dead load force applied to the top of the shear wall at the tension side as 

indicated in Table 38. 

Table 38:  Design Restraining Force for IRC Shear Wall 

Wall Supporting IRC Partial-Restraint 
Factor 

Dead Load Required 
(lb)1 

Roof Only 0.8 2,786 
Roof + One Story 0.9 3,512 

Roof + Two Stories 1.0 6,867 
1Based on 3/8” WSP per IRC with SPF Framing, G=0.42 
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11. The clamping force in shear walls constrained from the top with either 

external mechanical methods or dead loads allows a substantial horizontal 

load to transfer through the studs to the plate (220 plf for this research).  For 

this reason, the nails in the vertical end studs always failed first for these 

types of shear walls.  This behavior is not realized without the clamping 

action. 

12. Finite element analysis should model the behavior of wood shear walls. It 

should always include the effect of the boundary conditions and should model 

the connection behavior of the studs to the plates.  The separation of the 

studs from the plate can greatly reduce the unit shear capacity of the wall. 

7.3 Recommendations for Future Research 

Future research could extend in a number of directions.  Since the coefficient of 

variation for wind load is so large, this is an area that could use further research. 

Additional research could be conducted on the effect of wall length on partially 

restrained walls.  This could be included as a parameter to the partial restraint 

modification factor if it is found to be significant.  Finite element modeling could be 

improved with further research on connections within the shear wall.  Particularly the 

interaction of nail withdrawal and shear resistance of the framing nails.  Upon improving 

the connection behavior in FEM, comparisons of whole building tests utilizing partial 

restraints can be made and the FEM can be further calibrated. 
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APPENDIX A 

WALL TESTS 

A1 Wall Testing 

This appendix details further the testing procedure conducted for the 25 wood 

shear wall tests. 

A2 Wall Materials 

The material was delivered to the lab on March 11, 2011.  The following material 

was received and inventoried: 

Table 39:  Lumber Materials 

 

Quantity Description 

100 2x4x925/8” SPF NSLB1 Stud Grade Precut Studs 
25 2x4x14’ SPF NLGA2 No. 2 Plate Material 
25 32/16 APA Rated Sheathing, ½” Category 

Oriented Strand Board (OSB), tmin=0.483” 
1National Lumber Softwood Bureau; SPF South, G=0.36 
2National Lumber Grades Authority; SPF North, G=0.42 

   

Photo 2, Photo 3, Photo 4 and Photo 5 show the stamps recorded from the material. 

The 2x4x14’ plate material was cut into three pieces each 49½” long for the wall 

plates.  The groups of three plates were maintained such that all three plates from the 

same 14’ board were used in one wall.  During the cutting procedure, the 16” o.c. stud 

locations were marked.  After cutting all of the plates, a ¾” diameter hole was drilled in 

each bottom plate, five at 3” from one end and twenty 12” from one end.  The former 
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was for the Group A walls with the hold down while the latter was for the 5/8” diameter 

anchor bolt for Groups B to E.  

The OSB sheathing was further inventoried by weighing each piece, measuring 

the thickness of each side of each piece, marking the wall number, marking the nail 

locations, and performing an out-of-plane stiffness test on each piece.  Each sheet was  

 

Photo 2:  Wall Stud 

 

Photo 3:  Wall Plate 

 

Photo 4:  OSB Sheathing 

 

Photo 5:  OSB Sheathing 

 

Photo 6:  Digital Scale for OSB 

 

Photo 7:  Digital Scale Monitor 

 

Photo 8:  Thickness of OSB 
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carefully weighed with a Pelouze Model 4010 digital scale to one-tenth of a pound, 

Photo 6 and Photo 7 recorded.  The thickness of each side of each sheet was 

measured with a dial caliper to 0.001” along with two pieces of 3/8” x 5/8” x 4” tool steel 

Photo 7.  The tool steel was used to provide an average thickness of the OSB.  Some of 

the wood flakes are thicker than others creating high and low areas.  The tool steel 

averaged these high and low areas allowing a more accurate measurement.  The 

identification was marked on each sheet of OSB Photo 9.  Next, each sheet was placed 

on a pair of sawhorses spaced 7’- 8½” apart, center-to-center, and tied together with a 

pair of 2x4 strong-backs.  The location of the sawhorses was marked on the floor as a 

reference. 

The nail locations were marked on the face of each sheet using a piece of OSB 

as a story pole Photo 10.  An out of plane stiffness test was also conducted as a way to 

compare each sheet against one another.  The test was conducted simply by supporting 

each end of each piece of OSB such that it was spanning the long, 8 ft, length.  Once 

the sheet was set in the fixture, the center was 

marked.  An initial measurement from the long edge 

was made at the center of the length (measured and 

marked) to the concrete floor below (square to the  

 

Photo 9:  Wall Identification 

 

Photo 10:  Nail Layout 

 

Photo 11:  Panel Stiffness 
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floor and marked on the floor).  After 

the initial measurement, a 41.4 lb 

weight was added to the center of the 

sheet and another measurement was 

made to the floor below, Photo 11.    

These measurements were recorded to 

obtain a flexural stiffness.  The results 

of the OSB measurement are 

summarized in Table 40. 

A3 Wall Construction 

After inventorying the lumber 

and preparing it for construction of the 

wall, a fixture, Photo 12, was 

constructed to fabricate each wall.  The 

fixture consisted of a pair of sawhorses 

with LVLs and 2x4s connecting them 

and forming stops to construct square 

walls.  Each wall consists of three 

plates (two on top and one on bottom), four studs, and one sheet of OSB. 

Table 40:  OSB Measurements 
 

Weight OSB 
Sample   

Average 
Thickness 

Estimated 
Stiffness 

  (lbs) (in) (lb-in
2
/ft) 

A1 50.8 0.523 152,009 

A2 51.2 0.529 152,009 

A3 52.4 0.534 156,912 

A4 50.0 0.515 135,119 

A5 51.2 0.533 152,009 

B1 51.2 0.519 143,067 

B2 50.0 0.510 135,119 

B3 50.6 0.505 152,009 

B4 50.8 0.511 147,403 

B5 51.2 0.527 152,009 

C1 52.2 0.526 152,009 

C2 51.4 0.529 162,143 

C3 52.2 0.529 162,143 

C4 52.0 0.525 156,912 

C5 51.8 0.519 156,912 

D1 52.2 0.534 167,734 

D2 51.0 0.513 147,403 

D3 51.0 0.523 162,143 

D4 53.2 0.538 147,403 

D5 50.0 0.530 156,912 

E1 53.2 0.534 135,119 

E2 52.0 0.525 135,119 

E3 53.2 0.535 135,119 

E4 50.6 0.533 187,088 

E5 52.8 0.549 152,009 

Minimum 50.0 0.505 135,119 

Maximum 53.2 0.549 187,088 

Average 51.5 0.526 151,753 

Variance 0.98 0.000 143,766,517 

Std. Dev. 0.99 0.010 11,990 

COV 0.02 0.02 0.08  
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To begin construction of the walls, the bottom plate and one top plate were 

placed in the fixture.  Next, four studs were placed between the plates at the previously 

marked locations on the plates.  The bottom plate was fastened to each stud, Photo 13, 

with 2-0.131”x3¼” smooth shank, full head nails, Photo 14 and Photo 15, with a 

Paslode pneumatic nail gun.  The top plate was fastened to each stud the same as the 

bottom plate.  Next, the OSB wall sheathing was placed atop the studs and plates.  The 

bottom edge was carefully aligned with the bottom edge of the bottom plate and the 

stud frame was blocked tight to the fixture to square it.   A gage block was made to hold 

the edge of the sheathing ¾” from the edge of the end studs, Photo 16.  The aligned 

sheathing on the stud framed wall is shown in Photo 17.  Once the sheathing was 

 

Photo 12:  Wall Fixture 

 

Photo 13:  Wall Stud Connection 

 

Photo 14:  Stud Fasteners 

 

Photo 15:  Stud Fasteners 

 
Photo 16:  OSB Edge Gage 

 
Photo 17:  Assembled Wall 
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aligned in the correct position and the wall was square, the sheathing was fastened to 

each stud with 8d Common (0.131”x2½” smooth shank, full head) nails, Photo 18 and  

Photo 19, with a Paslode pneumatic nail gun, Photo 20. 

For all nails, the nail gun depth, Photo 21, and air pressure was set so that the 

nail heads were set flush with the surface of the material, Photo 22 and Photo 23.  In 

instances where the nail was not fully driven, the nails were driven flush with a hammer. 

No fasteners were overdriven. The placement of the fasteners was accomplished with 

accuracy as shown in Photo 23.  Along the vertical edges, the fasteners were located 

 
Photo 18:  Sheathing Fasteners 

 
Photo 19:  Sheathing Fasteners 

 
Photo 20:  Pneumatic Nailer  

Photo 21:  Nail Depth Adjustment 

 
Photo 22:  Sheathing Fastener Placement 

 
Photo 23:  Sheathing Fastener Placement 

 
Photo 24:  Edge Blow Out 

 
Photo 25:  Relocated Nail at Damaged 

Edge 
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3/8” from the edge of the sheathing and 3/8” from the inside edge of the stud, Photo 22.  

At these locations, the fasteners were driven at an angle (about 5°).  After completing 

the fastening of the sheathing, the back side was checked for any nails that missed the 

studs.  If any nails missed, they were removed and a new nail was installed 1” away 

from the intended location.  Similarly, if the edge of the sheathing was damaged (edge 

blow out), Photo 24, the nail was removed and a new nail was installed 1” away from 

the intended location, Photo 25.  These instances did not occur very often and the 

avoidance skills were learned after two walls.  Consistency of construction was easily 

accomplished since all walls were constructed the same day, in the same fixture, and by 

the same person. 

For all of the walls, the sheathing fastening was the same.  The perimeter nails 

were placed 6” o.c. (except first and last spaces) and the intermediate member nails 

were placed at 12” o.c. (except first and last spaces).  The spacing at the first and last 

space was different to allow for the boundary condition.  If the same spacing was used, 

the nails would be at the edge of the sheathing.  As noted above, the nails along the 

vertical edges were place 3/8” from the edge of the sheathing.  The nails along the 

bottom plate were placed ¾” from the bottom edge of the sheathing or along the 

centerline of the bottom plate.  The nails along the top edge were placed along the 

centerline of the first top plate, or 11/8” from the top edge of the sheathing.  Since there 

was no need to maintain a 3/8” edge distance on the corner nails, they were installed ¾” 

from the vertical edge, Photo 20. 

For the Group A walls, a mechanical hold down was installed to create the 

restrained condition.  A Simpson HDU8 hold down was used for wall A5, Photo 26.  The 
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HDU8 was installed flush with the bottom plate, Photo 27, and fastened to the stud with 

20-SDS ¼”x2½” screws, Photo 28.  Since the screws were longer than the stud 

thickness of 1½” a nominal 20” long 2x4 scab was used on the outside face of the stud, 

Photo 27, so that the SDS screws could fasten to it as well.  No other fasteners were 

used between the scab and the stud.  The bottom of the scab was held 5¼” up from the 

bottom of the wall.  This was duplicated for the remaining Group A walls. 

After testing wall A5, it was determined that the flush installation of the hold down 

caused prying of the bottom plate at the end stud.  This was discussed earlier in 

CHAPTER 3.  For this reason, the hold down was held up 1” from the bottom plate on 

walls A1 to A4, Photo 29.  Also, the hold down was changed to a Simpson HDU14 hold 

down, Photo 30, for these remaining walls.  This was done to assure that the wall failure 

would not be a result of the hold down or hold down fastener slippage.  The HDU14 was 

installed 1” above the bottom plate and fastened to the stud with 36-SDS ¼”x2½” 

screws.  The Simpson catalog states “Tension values are valid for hold downs flush or 

raised off of sill plates.”  They do not indicate a preferred method for installation. 
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Photo 26:  Simpson HDU8 Hold Down 

 

Photo 27:  Simpson HDU8 Hold Down 

 

Photo 28:  SDS ¼” x 2½” Screw 

 

Photo 29:  Simpson HDU14 Hold Down 

 
Photo 30:  Simpson HDU14 Hold Down 

 

 

A4 Test Setup 

A4.1 Test Fixture Setup 

The test fixture was setup within the Structural Building Component Research 

Institute’s test lab.  The fixture was fabricated such that each wall specimen could be 

easily removed and the next one installed.  An overall view of the test fixture setup is 

shown in Figure 23. 
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Figure 23:  Test Setup
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A4.2 Test Frame 

The test frame utilized two portal test frames and one cantilevered column.  All 

columns were W36x135’s which were anchored to a strong floor.  The two portal frames 

were used to support the vertical actuator utilizing a W6x25 beam supported by 

brackets on the columns.  The W6x25 was installed parallel to the columns.  The 

cantilevered column was used to support the horizontal actuator.  This column was 

oriented 90° to the portal columns. 

The base of the test frame consisted of an HSS6x2x¼ welded to bearing plates 

 

Photo 31:  Base Roller 

 

Photo 32:  Base Bearing Plate 

 

Photo 33:  Alignment of Frame 

 

Photo 34:  Alignment of Frame 

 

Photo 35:  Alignment of Horizontal 
Actuator 

 

Photo 36:  Restraint of Actuators 



www.manaraa.com

 

 

153 

that were anchored to the strong floor.  This tube supported four roller bearings, Photo 

31, one below each wall stud.  The roller bearings consisted of two steel rollers atop the 

tube and two nylon rollers along the bottom, below the tube.  Therefore the rollers could 

resist compression and tension forces. A load cell with a bearing plate was mounted on 

each roller, Photo 32. 

The HSS6x2 was aligned with the W6 above using a plumb bob and both were 

parallel with the portal frame columns.  The plumb bob was also used to set the vertical 

actuator, Photo 33 and Photo 34.  The horizontal actuator was aligned with a string 

along the centerline of the wall and leveled in place, Photo 35.  Both vertical and 

horizontal actuators were anchored to resist translation at the wall, Photo 36 

The actuators were both hydraulic piston, 25,000 lb capacity, with a 20” stroke.  

The actuators each have internal load cells and LVDT’s for control.  The vertical 

actuator was connected to a roller where it loaded the wall, Photo 38 and Photo 39.  

This was the same roller as the base of the wall but with the nylon rollers removed.  The 

horizontal actuator had a 1½” diameter T-bar that pushed against the wall bar.  This T-

bar was smooth to slide on the wall bar. 

In order to transfer the load from each actuator to the wall, a T-shaped steel 

bracket was fabricated from HSS3x2x¼ steel.  An additional ½” plate was added to the 

vertical piece of the T-shaped bracket to bear against the ends of the double top plate, 

Photo 40.  This was done to keep the load on the double top plates and not load the 

end stud.  The T-shaped bracket was also necessary to allow the wall to rotate and the 

actuators to slide on corner of the wall.  To eliminate adding additional stiffness to the 

wall, the bracket only extended to the second stud.  The bracket was fastened to the top 
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plate with 2-¼ x 3” screws.  The surface of the T-

shaped bracket was smoothed with a belt sander to 

minimize friction on the T-bar. 

  
The wall was restrained at the top to resist out 

of plane movement by adding two 2x4 strong-backs (two 2x4’s fastened in an L-shape) 

with two rollers each.  The strong-backs were fastened to the top of the wall with 

2-¼ x 3” screws.  The rollers were guided along an L5x5x¼ parallel to the wall and 

anchored to the portal frame columns as shown in Photo 37.  The rollers were offset 

down 3” from the strong-backs to allow the rollers to be in contact with the guide as the 

wall rotated and moved upward.  The strong-backs were skewed to the wall so that 

each roller is in contact with the guide.  A 2x4 gauge block was placed between the top 

of the wall and the guide to locate the wall in the correct position (parallel to the guide) 

before fastening the strong-backs to the top of the wall. 

 

Photo 37:  Guide Rollers 

 

Photo 38:  Alignment of Vertical Actuator 

 

Photo 39:  Vertical Actuator Roller 

 
Photo 40:  Horizontal Actuator 
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A5 Instrumentation 

The wall test specimen was instrumented as shown in Figure 23. A total of seven 

load cells were used and nine string potentiometers.  The load cells measured both the 

actuator loading and the reactions.  The string potentiometers captured the global 

displacement of the wall both vertically and horizontally by measuring the wall studs and 

plates.  The global displacement of the sheathing was measured as well.  

Measurements at the two locations allow for the determination of the differential 

movement of the sheathing.  A diagonal measurement of the wall was also made on the 

back side of the wall studs. 

The equipment used for the tests is shown in Figure 23 and summarized in Table 

41.  A typical load cell is shown in Figure 24.  A typical sting potentiometer is shown in 

Figure 25. The load cells and string potentiometers were all calibrated between 

September 24, 2010 and October 6, 2010.  Each calibration had a text file that was 

imported into the data acquisition software.  The calibrations of the string 

potentiometers were nonlinear. 

A total of 17 channels were connected for the data acquisition, but only 16 were 

used; items 3-18 in Figure 23.  The data acquisition equipment, Photo 41, was then 

connected to a desktop CPU, Photo 42, for processing and recording. 

All of the string potentiometers, except the diagonal one, were connected to rigid 

fixtures.  The two string potentiometers used to measure vertical displacement of the 

OSB sheathing were connected to a gate that could swing out of the way for the wall 

exchange.  The string potentiometers were connected to the wall specimen with wood 
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screws that were installed in the same location for each wall, Photo 43.  This allowed for 

quick set up of each wall. 

 

Table 41: Test Equipment 

 

 

Function Model 
Displacement Measurements- 

• Micro-Epsilon String Potentiometers 
 
WDS-500-P60-SR-U 
WDS-7500-P60-SR-U 
WDS-1500-P60-SR-U 
 

Load Actuator 
• Hydraulic Piston 
• 20” Stroke Maximum 
• 25,000 lb Load Maximum 

 

Load Cells 
• Interface Load Cells 
• Eccentric Load Compensated 
• Tension and Compression Capacity 
• Performance to 0.02% Error 

 
1210 AF-10K-B & 1220 DRB-25K 
 

Data Acquisition 
• Up to 1,000,000/# of Measuring 

Devices Hz 

 

 

 

 
Figure 24:  Load Cell 

 

 

Figure 25:  String Potentiometer 
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A total of 17 channels were connected for the data acquisition, but only 16 were 

used; items 3-18 in Figure 23.  The data acquisition equipment, Photo 41, was then 

connected to a desktop CPU, Photo 42, for processing and recording. 

A5.1 Test Equipment Software 

Two separate software programs were used to conduct the test; one for the data 

acquisition and one for the actuator control.  The data acquisition software used was 

Dasylab 10.  This software had a wonderful interface that allowed pasting images of the 

test setup, created with AutoCAD, into its graphic view.  Then, text boxes were created 

at each of the instruments that were linked to the instruments.  This allowed real time 

views of the load and displacement that could quickly be identified on the graphic.  

Additionally, the load-deflection curve was plotted real time as well.  The plot included 

 

Photo 41:  Data Acquisition 

 

Photo 42:  CPU For Recording Data 

 

Photo 43:  String Potentiometer 
Connection 
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both the stud and the sheathing displacement.  It was easy to see the peak load with 

this plot of the hysteresis curve.  The peak load was also displayed on the screen along  

with the calculated unit shear in the wall panel.  Figure 26 shows a view of the graphics 

display from Dasylab.  The actuator control software used was Adamation.  This 

software controlled the actuators during the test as well as allowed manual control of 

the actuators during the test setup.  The load protocol was entered into the software in a 

spreadsheet format, Figure 27.  This allowed easy changes for the five different load 

test setups.  The manual control allowed the user to retract the actuators when the test 

was complete and then bump them into the wall after the new wall was installed in the 

test assembly.  The software also allows the user to set a maximum load that can be 

applied in manual mode for safety.  This limit was set to 40 lb for this testing. 

 

Figure 26:  Data Acquisition Software Graphics Display 
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A5.2 Test Procedure 

A5.2.1 Test Sequence 

The testing followed the alpha order indicated in Table 11.  The purpose of this 

was to determine the hold down force from the Group A wall set and consider this as 

the full restraining force.  The subsequent groups then used a fraction of this restraining 

force as indicated in Table 11. 

A5.2.2 Test Loading 

As described earlier, the five walls in Group A were restrained with a hold down.  

Each wall was placed in the test fixture tight against the lateral load cell at the base of 

the wall; the hold down bolt was installed through the hold down and into the load cell 

below; the top of the wall was supported with the two roller guides; the T-bar was 

connected to the top of the wall; the other two bottom load cells were aligned with the  

 

Figure 27:  Actuator Control Software Load Steps 
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Graph 36:  Wall Group A Loading 
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two interior studs; all string potentiometers were connected to the wall; and the 

horizontal actuator was placed up against the T-bar with a nearly zero force. 

The loading for the wall specimen was based on ASTM E564.  The load was 

applied in load steps as indicated in Graph 36. This illustrates the load steps that were 

entered into the actuator control software as shown in Figure 27.  Load step one is the 

preload which was 10% of the estimated ultimate load and was applied for 5 minutes.  

Load steps two and three were at 1/3 and 2/3 the estimated ultimate load respectfully 

and are applied for 1 minute.  Load step four was the final load step to determine the 

ultimate capacity.  The load rate for each of the load steps was the same and was 

determined from the estimated ultimate load applied over a period of seven minutes.  

ASTM E564 requires the load to be applied in no less than five minutes.  As shown in 

Graph 36 each of the first three load steps were unloaded at twice the loading rate. 
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The actuator was load controlled instead of deflection controlled.  This was used 

because the actuator control software can either provide load control or displacement 

control.  For two actuators, the control type must be the same.  In other words, the 

vertical actuator could not be load controlled while the horizontal actuator was 

displacement controlled.  Since the vertical actuator had to be load controlled, the 

horizontal actuator also was load controlled.  The tests were typically manually stopped 

since the limit load was always well above the anticipated ultimate load. 

The data for the tests was recorded by the data acquisition equipment.  This 

recorded the load cell and string potentiometer data.  The rate at which the data was 

recorded was two readings every second or 2 Hz. 

Subsequent tests using ¼, ½, and ¾ of full restraint, and no restraint were 

conducted as Groups B, C, D and E respectively.  The restraining forces for the partially 

restrained tests was provided by the vertical load actuator placed above the end of the 

wall with a load cell between the actuator and the wall to obtain the actual applied 

restraining force as shown in Figure 23.  As noted earlier the unrestrained wall had one 

5/8” diameter anchor bolt 12” from the tension end and no load from the actuator above. 

A5.2.3 Test Procedure 

Once the test specimen was set and ready, the load cells and string 

potentiometers were zeroed on the data acquisition software and the software was set 

to record to a previously named text file in a project folder.  Each filename and folder 

was unique for each test.  The filename for each wall was of the same format so that it 

could be processed with Matlab software afterward.  The load test was then started 

from the actuator control software. 



www.manaraa.com

 

 

162 

Once the test began, the specimen was monitored for stability and performance 

and the data acquisition software display, Figure 26, was monitored for expected 

behavior.   The data acquisition software display made it easy to see that the load cells 

and string potentiometers were working and that the readings were making sense 

based on the load input and displacement. 

The project folder on the computer was checked regularly to make sure that the 

data text file was being written by the data acquisition software.  During the test, notes 

and screenshots from the data acquisition software display were added to a unique 

word processing file for each wall specimen.  The file used the same format so that it 

was easy to analyze the data afterward. 

A5.2.4 Test Data 

The test results were in the form of an ASCII text file.  The file records the date 

and time of each reading.  The readings were of the sixteen channels shown as items 3-

18 in Figure 23.  As noted earlier, the instrumentation readings were taken at a rate of 2 

Hz.  In addition to the data acquisition, photos of the wall after failure were also taken.  

The photos aided in recording the failure modes of the particular walls.  In addition to 

the photos, video of the bottom plate on the tension side was taken on seven of the 

partially restrained and unrestrained wall specimens. 
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A6 Specific Gravity Test 

The specific gravity of the studs, 

plates, and wall sheathing was 

determined with a specific gravity test in 

accordance with ASTM  2395.  Upon 

completion of the tests, the wall 

specimens were dismantled and 

oversized specific gravity test specimens 

were cut from each individual piece, 

identified with a marker for the wall specimen and the location of the member in the wall 

specimen.  The samples were immediately sealed in plastic bags, Photo 44 for 

transportation from the SBC Research Institute to the test lab. 

The samples were then cut to 

uniform sizes with square edges for 

volume measurements.  The samples for 

the 2x4’s were cut to 1 in. lengths (parallel 

to grain) and the wall sheathing was cut to 

3 by 6 in. pieces.  Each piece was identified as described above, measured, and 

weighed, Photo 45.  The size measurements were made with a dial caliper with a 

precision of 1/1000 in.  The weight of each sample was made with an AccuLab Pocket 

Pro 150-B digital scale with an accuracy of 0.1 g. The samples were all resealed in their 

plastic bags until they were oven-dried. 

 

Photo 44:  Specific Gravity Samples 
from Wall Specimens 

 

Photo 45:  Scale and Calipers 
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All of the samples were oven-dried at 

Testing Engineers and Consultants lab for 48 

hours in a Blue M electric oven at 103°.  The 

temperature was checked twice daily with a 

Cen-Tech infrared thermometer.  The weights of 

random samples were checked at 24 hours, 44 

hours, and finally 48 hours to determine that 

they had reached constant weight. 

Upon completion of drying, all samples 

were weighed immediately upon removal from the oven.  Using the volume 

measurements, initial weight, and final weight, the moisture content and specific gravity 

were determined for each sample. 

A6.1 Results of Specific Gravity Test 

The results from the specific gravity tests were used to determine the probability 

distribution of the specific gravity.  For each different material, the studs, the plates, and 

the OSB sheathing, the result data was grouped in bins as shown in Graph 37. 

Using a Chi-Square test, the likely probability distribution was determined.  An 

example of this is shown in Table 42.  

The number of degrees of freedom for the Chi-Square test is f = 10-3 = 7.  With a 

significance level α = 5%, c.95,7 = 14.1 (Ang & Tang 1975).  Both distributions are valid, 

but since 8.88 is less than 14.1 and since lognormal always yields a positive value, 

lognormal is the preferred distribution. 

 

 

Photo 46:  Oven-Drying 
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Sawn Lumber Specific Gravity Histogram
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Graph 37:  Distribution of the Specific Gravity for SPF-S Studs 

 

Table 42:  Chi-Square Test for Specific Gravity Probability Distribution for Studs 

Chi-Square Test for Relative Goodness-of-fit 

    Theoretical frequency 

  ei 
(ni-ei)

2
/ei 

Interval         

  

Observed 
frequency 

ni Normal Lognormal Normal Lognormal 

<0.3 0 2.9 2.0 2.89 2.04 

0.3-0.32 6 6.7 6.8 0.07 0.09 

0.33-0.34 15 14.1 15.4 0.06 0.01 

0.34-0.36 32 21.2 22.4 5.44 4.08 

0.36-0.38 17 22.9 22.4 1.51 1.31 

0.38-0.40 17 17.6 16.2 0.02 0.04 

0.40-0.42 7 9.6 8.9 0.72 0.41 

0.42-0.44 3 3.8 3.9 0.15 0.19 

0.44-0.46 2 1.0 1.4 0.86 0.30 

>0.46 1 0.2 0.5 2.39 0.41 

Σ 100 100.0 100.0 14.10 8.88 
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OSB Sheathing Specific Gravity Histogram
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Graph 38:  Distribution of the Specific Gravity for OSB Sheathing 

The specific gravity of the materials for the five sets of walls are shown in the 

following tables . 
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Table 43:  Specific Gravity of Members in Wall Group A 

A1 A2 A3 A4 A5
G G G G G

1 0.33 0.34 0.35 0.38 0.45

2 0.33 0.35 0.40 0.34 0.32
3 0.31 0.37 0.36 0.31 0.37

4 0.39 0.36 0.35 0.42 0.35
BP 0.36 0.40 0.42 0.36 0.40

TP 0.37 0.39 0.42 0.36 0.39
TP.2 0.37 0.39 0.47 0.37 0.39

G 0.56 0.50 0.57 0.62 0.60
t, in 0.510 0.506 0.513 0.495 0.498

Set "A" with Holdown
Wall

Member

OSB

 

Table 44:  Specific Gravity of Members in Wall Group B 

B1 B2 B3 B4 B5
G G G G G

1 0.33 0.35 0.36 0.34 0.34

2 0.35 0.39 0.35 0.36 0.34
3 0.45 0.40 0.38 0.36 0.34

4 0.40 0.32 0.40 0.35 0.38
BP 0.38 0.43 0.39 0.43 0.37

TP 0.38 0.41 0.39 0.43 0.36
TP.2 0.37 0.43 0.39 0.43 0.38

G 0.59 0.54 0.53 0.57 0.59
t, in 0.510 0.489 0.543 0.501 0.512

OSB

Set "B" with 1/4 Restraint

Member

Wall

 



www.manaraa.com

 

 

168 

Table 45:  Specific Gravity of Members in Wall Group C 

C1 C2 C3 C4 C5
G G G G G

1 0.40 0.34 0.39 0.33 0.37

2 0.32 0.38 0.33 0.39 0.39
3 0.32 0.36 0.34 0.34 0.34

4 0.38 0.39 0.38 0.37 0.41
BP 0.43 0.41 0.44 0.40 0.39

TP 0.45 0.40 0.40 0.36 0.37
TP.2 0.43 0.40 0.48 0.37 0.36

G 0.62 0.60 0.61 0.58 0.58
t, in 0.503 0.507 0.503 0.503 0.515

Set "C" with 1/2 Restraint

Member

Wall

OSB

 

Table 46:  Specific Gravity of Members in Wall Group D 

C1 C2 C3 C4 C5
G G G G G

1 0.34 0.34 0.34 0.35 0.37

2 0.38 0.37 0.41 0.35 0.35
3 0.44 0.40 0.39 0.35 0.41

4 0.40 0.36 0.37 0.36 0.43
BP 0.48 0.37 0.36 0.39 0.43

TP 0.33 0.37 0.38 0.36 0.38
TP.2 0.39 0.39 0.34 0.40 0.33

G 0.63 0.61 0.56 0.57 0.57
t, in 0.499 0.470 0.514 0.544 0.508

OSB

Set "D" with 3/4 Restraint

Member

Wall
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Table 47:  Specific Gravity of Members in Wall Group E 

E1 E2 E3 E4 E5
G G G G G

1 0.32 0.36 0.42 0.34 0.37

2 0.40 0.34 0.36 0.41 0.37
3 0.36 0.34 0.44 0.42 0.52

4 0.37 0.39 0.34 0.38 0.38
BP 0.42 0.41 0.45 0.40 0.41

TP 0.43 0.44 0.46 0.40 0.41
TP.2 0.44 0.41 0.34 0.41 0.41

G 0.57 0.64 0.60 0.61 0.55
t, in 0.547 0.531 0.515 0.527 0.516

Set "E" with no Restraint

Member

Wall

OSB
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APPENDIX B 

SBCRI ACCREDITATION CERTIFICATE 



www.manaraa.com

 

 

171 



www.manaraa.com

 

 

172 

APPENDIX C 

STRING POTENTIOMETER AND LOAD CELL SPECIFICATIONS 
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APPENDIX D 

FOSM RELIABILITY OF SDPWS 
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APPENDIX E 

FOSM RELIABILITY OF WALL  
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APPENDIX F 

MONTE CARLO SIMULATION 
 
 

 

1
8

8
 



www.manaraa.com

 

 

189 

APPENDIX G 

EXAMPLE CALCULATIONS OF UNIT SHEAR  

This appendix illustrates the use of the proposed partial restraint factor.  Also, a 

comparison of both ASD and LRFD methods are provided as examples and 

comparison. 

Examples of Proposed Design Method- 

Consider a wall partially restrained with a dead load.  The following design information 

is provided.  What is the wall unit shear capacity? 

Given: 
P=2,000 lb 
H=8’ 
L=4’ 
SPF-S Framing Members, G=0.36 
15/32” OSB Sheathing 
8d Common nails with 6:12 nail pattern 
½” Anchor bolt 12” from leading edge 
 

ASD- 
 
Solution- 
 

From SDPWS (2005), Table A.4.3A, 
 
  plf 628360501730 =−−×= ))..((Vn  

 
Load Combination 1:  D+W 
 

plf 201
2

6390628

639019903980309139805090

3980
8628

2000

2

==

=++−=

=
×

=

).(
'V

..).(.).(.C

.C

n

pr

p

 

 
Load Combination 2:  0.6D+W 
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Governs   plf 190
2

6040628

604020702390163064210

2390
8628

200060

09709257

←==

=++=

=
×

=

−−

).(
'V

..)).(..(C

.
)(.

C

n

..

pr

p

 

 
ASD Unit Shear Capacity 
is 190 plf 

 
LRFD- 

 
Solution- 
 

From SDPWS (2005), Table A.4.3A, 
 
  plf 628360501730 =−−×= ))..((Vn  

 
Load Combination 1:  1.2D+1.6W 
 

plf 222
61

3550

plf 355708062880

708020304770294147804980

4780
8628

200021

2

==
γ

φ
=

==φ

=++−=

=
×

=

.

.'V
V

).)((.'V

..).(.).(.C

.
)(.

C

n

n

pr

p

 

 
Load Combination 2:  0.9D+1.6W 
 

 ASD)as (Same Governs   plf 190
61

303

plf 303603062880

603020303580294135804980

3580
8628

200090

2

←==
γ

φ
=

==φ

=++−=

=
×

=

.

'V
V

).)((.'V

..).(.).(.C

.
)(.

C

W

n

n

pr

p

 

 
LRFD Unit Shear Capacity 
is 190 plf (unfactored) 
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The prescriptive design of the most widely used residential building code in the 

United States, the IRC, allows the use of partially restrained wood shear walls to resist 

wind and seismic loads.  Wind load is the most common controlling lateral design load 

for these structures.  In contrast, the complimenting building code, the IBC, requires 

either a restraining dead load or a mechanical hold down device to resist overturning.  

To prescribe a safe structure, it is important to know the effect of partial restraint on the 

overturning resistance of wood shear walls constructed in accordance with the IRC and 

equally important whether the partially restrained wood shear walls provide the same 

level of reliability as fully restrained wood shear walls for wind load.  This is the focus of 

this research. 

Twenty five Monotonic tests were conducted of 4’ x 8’ wood shear walls with five 

varying restraining methods (wall types). There were five sets of five wall types.  One of 

the sets had only an anchor bolt, three sets had different dead loads with one anchor 

bolt, and one set had a mechanical hold down.  The results of the test program were 

used to determine the partial restraint effect, create a nonlinear finite element model, 
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and to determine the statistical data required to perform a Monte Carlo simulation of the 

wall behavior. 

The Monte Carlo simulation result was used to calibrate a nonlinear partial 

restraint factor to a target reliability index of 3.25.  The calibration was performed for 

both ASD and LRFD load combinations as required by the IBC.  The research 

concludes with a closed-form solution, including the calibrated nonlinear partial restraint 

factor developed, to determine the unit shear capacity of a partially restrained or fully 

restrained (with dead load or mechanical hold down) wood shear wall constructed in 

accordance with the IRC by utilizing the fully restrained nominal unit shear values of 

AF&PA’s Special Design Provisions for Wind and Seismic. 
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